灿哥哥的博客

专注技术,热爱分享

C++笔试题之回旋(螺旋)矩阵
回旋矩阵,顾名思义,就是从外圈数字由小到大旋转到内圈的N阶矩阵。
2阶回旋矩阵
1  2
4  3
3阶回旋矩阵
1  2  3 
8  9  4 
7  6  5
4阶回旋矩阵
  1    2    3   4
12  13  14   5     
11  16  15   6      

10   9   8  7

一.对称分析法

N阶矩阵,意味着从外至内一共有N/2向下取整个空心矩阵,比如4阶矩阵,就由内外两个子矩阵组成。


而对于每个子矩阵,可以采用上下和左右对称分析,如下图。


箭头不代表方向,因为QQ截图画不出直线。对于最外层的子矩阵,上边的1、2、3、4和下边的7、8、9、10;左边的11、12和右边5、6可以对称分析。

代码如下。

#include <iostream>
#include <iomanip>

using namespace std;

int matrix(int i, int j, int n);

int main()
{
    int n, i, j, num=1;

    cout << "Please input N:";
    cin >> n;

    int a[100][100]={0};

    for(int m=0;m<n/2;m++)//n阶矩阵,意味着从外至内一共有n/2向下取整个矩阵;
    {
        for(j=m;j<n-m;j++)//上
        {
            a[m][j]=num++;
        }
        for(i=m+1;i<n-m-1;i++)//右
        {
            a[i][n-m-1]=num++;
        }
        for(j=n-m-1;j>=m;j--)//下
        {
            a[n-m-1][j]=num++;
        }
        for(i=n-m-2;i>=m+1;i--)//左
        {
            a[i][m]=num++;
        }

    }
    if(n%2==1)//当阶数%2=1时,最中间的数值
    {
        a[n/2][n/2]=n*n;
    }
    for(i=0;i<n;i++)//输出矩阵
    {
        for(j=0;j<n;j++)
        {
            cout << setw(4) <<a[i][j];
        }
        cout << endl <<endl;
    }

    return 0;
}

此处思路是大环套小环的“嵌套”思路,即由外圈向内,逐圈进行计算,得益于数组可以先计算再输出的所谓优点,可以先计算出每一圈各个位置的每个数之后,再进行整体的输出。这里的方法更将每一环切分为4小段,再对每一段上的每一个数进行填充。

二.循环输出法

这种方法是最原始的方法,就是将矩阵的每环由外至内循环输出,最外层的为0环,环数向内依次递增。每环的数据分段输出,分段规则如下图所示,这里以6阶矩阵的0环为例。


依次输出红框中的数据——>绿框中的数据——>蓝框中的数据——>黄框中的数据,每个框中数据输出的顺序是从上到下,从左到右。

#include <iostream>
#include <iomanip>

#define max(a,b)        (((a) > (b)) ? (a) : (b))
#define min(a,b)        (((a) < (b)) ? (a) : (b))

using namespace std;

int matrix(int i, int j, int n);

int main()
{
    int n, i, j;

    cout << "Please input N:";
    cin >> n;

    for (i = 0; i < n; i++)
    {
        for (j = 0; j < n; j++)
        {
            cout << setw(4) << matrix(i, j, n);
        }
        cout << endl <<endl;
    }

    return 0;
}

int matrix(int i, int j, int n)
{
    int m, a, l;
    //计算在第几环,每环相当于一个子空心矩阵
    m = min( min( i, n-1-i ), min( j, n-1-j ) );
    //让每一个子矩阵的首元素的下标都为[0][0],这样所有的子矩阵就可以同等对待
    i -= m;
    j -= m;

    a = 1 + 4*m*(n-m);   //首元素

    l = n - 2*m;         //环边长

    if (i == 0)
    {
        //返回红框中的元素。
        return a+j;
    }
    else if (j == 0)
    {
        //返回绿框中的元素。以0环为例,0环的元素个数为6*4-4=(6-1)*4,
        //即0环矩阵每条边的元素(边长)*边数-四个被重复计算了的元素。
        //很显然元素20=1+4*(6-1)-1,19=1+4*(6-1)-2,......
        //绿框中的元素随着行数增加而递减,于是得出如下规律。
        return a + 4*(l-1) - i;
    }
    else if (i == l-1)
    {
        //返回蓝框中的元素。元素15等于0环的最大元素a+4*(l-1)-1减去5(即l-1),
        //也就是15=a+4*(l-1)-1-(l-1)=a+3*l-4=a+3*l-3-j,对于15而言,j=1。
        return a + 3*l - 3- j;
    }
    else if (j == l-1)
    {
        //返回黄框中的元素。
        return a + l-1 + i;
    }
}

三.任意阶矩阵

既然是任意阶矩阵,那么N阶矩阵当然包括在内,强烈推荐这种写法。

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{
    int n=6,m=6;
    cout << "Please input M:";
    cin >> m;
    cout << "Please input N:";
    cin >> n;
    
    int num[100][100]={0};
    int count = 1;
    int x = 0, y = 0;
    int dx = 0, dy = 1;
    
    while (count <= m * n)
    {
        num[x][y] = count;
        x += dx;
        y += dy;
        if (dy == 1 && (y >= n - 1 || num[x][y+1] != 0))
        {
            dx = 1;
            dy = 0;
        }
        else if (dx == 1 && (x >= m - 1 || num[x+1][y] != 0))
        {
            dx = 0;
            dy = -1;
        } 
        else if (dy == -1 && (y <= 0 || num[x][y-1] != 0))
        {
            dx = -1;
            dy = 0;
        } 
        else if (dx == -1 && (x <= 0 || num[x-1][y] != 0))
        {
            dx = 0;
            dy = 1;
        }
        count++;
    }
    for(int i=0;i<m;i++)//输出矩阵
    {
        for(int j=0;j<n;j++)
        {
            cout << setw(4) <<num[i][j];
        }
        cout << endl <<endl;
    }

    return 0;
}

输出结果,7*9阶矩阵


四.变种

最近去快手面试,碰到了一个螺旋矩阵的变种,要求是这样的:给出一个正常的M*N阶数字矩阵,螺旋输出。

1   2    3    4

5   6    7    8

9   10 11  12

13 14 15  16

即输出结果为:1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10

对于这道变形题,只需要将上面的代码稍作修改即可,将二位数组的赋值改为输出,代码如下。

#include <iostream>
#include <iomanip>

using namespace std;

const int size = 4;
int num[size][size] = {
    1, 2, 3, 4,
    5, 6, 7, 8,
    9, 10, 11, 12,
    13, 14, 15, 16
};

int main()
{
    int n=4,m=4;
    int count = 1;
    int x = 0, y = 0;
    int dx = 0, dy = 1;

    for(int i=0;i<m;i++)//输出矩阵
    {
        for(int j=0;j<n;j++)
        {
            cout << setw(4) <<num[i][j];
        }
        cout << endl <<endl;
    }

    while (count <= m * n)
    {
        cout<< num[x][y] << " ";
        num[x][y]=0;
        x += dx;
        y += dy;
        if (dy == 1 && (y >= n - 1 || num[x][y+1] == 0))
        {
            dx = 1;
            dy = 0;
        }
        else if (dx == 1 && (x >= m - 1 || num[x+1][y] == 0))
        {
            dx = 0;
            dy = -1;
        }
        else if (dy == -1 && (y <= 0 || num[x][y-1] == 0))
        {
            dx = -1;
            dy = 0;
        } 
        else if (dx == -1 && (x <= 0 || num[x-1][y] == 0))
        {
            dx = 0;
            dy = 1;
        }
        count++;
    }
    cout<<endl;


    return 0;
}


参考链接:https://blog.csdn.net/pre_waist_l/article/details/79755293

参考链接:https://blog.csdn.net/dongsh315/article/details/24377191

参考链接:https://blog.csdn.net/ls9512/article/details/72675860

阅读更多
版权声明:本文为灿哥哥http://blog.csdn.net/caoshangpa原创文章,转载请标明出处。 https://blog.csdn.net/caoshangpa/article/details/80352933
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

C++笔试题之回旋(螺旋)矩阵

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭