1.1 数据存储和分析
我们生活在数据时代,每天都有大量的数据在产出,但这些数据怎么存储、使用就变的非常重要的;一个数据不被使用那这份数据就是死数据
现在我们的磁盘读速度100M/s 如果读10T 的数据需要 10 * 1000 * 1000 M / 100M = 30个小时;那这样的速度肯定是不可取的,一种简单的办法就是把数据存储在多台机器上(数据足够大,一台机器也存储不下来);然后并行的读取多个磁盘,这样读取时间就会降下来;这样一块磁盘存储很多份数据,一份大数据分配到多台机器上,把数据的读取错开时间,就可以达到最大的效率(吞吐量)
hadoop 系统提供了一个稳定的共享存储和分析系统;存储由HDFS 系统支持,分析是由MR 来支持;存储和计算(分析) 是hadoop 系统的2个核心功能
1.2 haddop 生态系统的组成部分
- core: 一些列的api 接口
- hdfs: 分布式文件系统
- mapreduce: 大数据并行计算
- pig: 一种流式语言,运行在hadoop 和hdfs上
- hbase:分布式、列存储数据库
- hive : 分布式数据仓库,提供SQL 的查询语言