2018南昌邀请赛网络赛d题

本文深入探讨了一种使用动态规划(DP)解决火柴数字问题的独特算法。通过对输入的火柴数量和符号进行预处理,文章展示了如何将问题转换为类似背包问题的DP过程,以找出最大可能的数值组合。通过详细的代码示例,读者可以了解算法的具体实现步骤,包括成本计算、状态转移和最优解的获取。
摘要由CSDN通过智能技术生成

刚开始看到此提时也没想到dp

但是仔细一思考可以发现确实是

我们只要单独处理第一位数

剩下的符号和数字看成一个物品

进行类似背包的dp即可

首先预处理所有火柴和符号

根据输入的总火柴进行一次dp即可

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cstring>
using namespace std;
int cost[10]= {6,2,5,5,4,5,6,3,7,6}; //单个数字花费
int num[15][100];//大数花费
int nnum[15][100];
char s[105];
int dig[105];
int dp[105][805];
int main()
{
    memset(num,0,sizeof(num));
    int n;//预处理出num数组
    for(int i=1; i<=9; i++) //九位数
    {
        for(int k=0; k<=9; k++)//10个数字哪个
        {
            if(i==1&&k==0) continue;
            for(int j=0; j<=63; j++)
            {
                if(num[i-1][j]!=0||j==0)
                    num[i][j+cost[k]]=max(num[i-1][j]*10+k,num[i][j+cost[k]]);
            }
        }
    }
    for(int i=1; i<=9; i++) //九位数
    {
        for(int j=2*i; j<=7*i; j++)
        {
            nnum[i][j+2]=num[i][j];
            //cout<<j+2<<"->"<<nnum[i][j+2]<<endl;
        }
        nnum[i][i*2+1]=-num[i][i*2];
    }
//    for(int i=1;i<=9;i++)
//    {
//        for(int j=2*i;j<=7*i;j++)
//        {
//            printf("%d->%d ",j,num[i][j]);
//        }
//        cout<<endl;
//    }
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        scanf("%s",s+1);
        int len=n;
        int cnt=1;
        int pos=0;
        int sum=0;
        for(int i=1; i<=len; i++)
        {
            //cout<<"q"<<endl;
            if(s[i]=='+')
            {
                sum+=2;
                dig[cnt]=pos;
                cnt++;
                pos=0;
            }
            if(s[i]=='-')
            {
                //sum+=pos;
                sum+=1;
                dig[cnt]=pos;
                cnt++;
                pos=0;
            }
            if(s[i]=='1') sum+=2,pos++;
            if(s[i]=='2') sum+=5,pos++;
            if(s[i]=='3') sum+=5,pos++;
            if(s[i]=='4') sum+=4,pos++;
            if(s[i]=='5') sum+=5,pos++;
            if(s[i]=='6') sum+=6,pos++;
            if(s[i]=='7') sum+=3,pos++;
            if(s[i]=='8') sum+=7,pos++;
            if(s[i]=='9') sum+=6,pos++;
            if(s[i]=='0') sum+=6,pos++;
            //cout<<i<<"->"<<sum<<endl;
        }
        //sum+=pos;
        dig[cnt]=pos;
        for(int i=0; i<=100; i++)
        {
            for(int j=0; j<=800; j++)
            {
                dp[i][j]=-1000000000;
            }
        }
        dp[0][0]=0;
        if(cnt==1)
        {
            printf("%d\n",num[pos][sum]);
        }
        else
        {
        for(int i=1; i<=cnt; i++) //多少位
        {
            //cout<<i<<"->"<<dig[i]<<endl;
            if(i!=1)
            {
                for(int j=2*dig[i]+1; j<=7*dig[i]+2; j++) //
                {
                    for(int k=0; k<=sum; k++)
                    {
                        //if(dp[i-1][j]>=-1e8)
                        dp[i][k+j]=max(dp[i-1][k]+nnum[dig[i]][j],dp[i][k+j]);
                    }
                }
            }
            else
            {
                for(int j=2*dig[i]; j<=7*dig[i]; j++) //
                {
                    for(int k=0; k<=sum; k++)
                    {
                        if(k==0&&k+j<sum)
                        {
                         dp[i][k+j]=max(dp[i-1][k]+num[dig[i]][j],dp[i][k+j]);
                         //cout<<j<<num[dig[i]][j]<<endl;
                         //cout<<k+j<<" "<<dp[i][k+j]<<endl;
                        }
                    }
                }
            }
        }
        cout<<dp[cnt][sum]<<endl;
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值