计算n!末尾所含0的个数

计算阶乘n!末尾所含0的个数
问题描述
给定参数n(n为正整数),请计算n的阶乘n!末尾所含有“0”的个数。
例如,5!=120,其末尾所含有的“0”的个数为1;10!= 3628800,其末尾所含有的“0”的个数为2;20!= 2432902008176640000,其末尾所含有的“0”的个数为4。

计算公式
这里先给出其计算公式,后面给出推导过程。
令f(x)表示正整数x末尾所含有的“0”的个数,则有:
   当0 < n < 5时,f(n!) = 0;
   当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。

问题分析
显然,对于阶乘这个大数,我们不可能将其结果计算出来,再统计其末尾所含有的“0”的个数。所以必须从其数字特征进行分析。下面我们从因式分解的角度切入分析。

我们先考虑一般的情形。对于任意一个正整数,若对其进行因式分解,那么其末尾的“0”必可以分解为2*5。在这里,每一个“0”必然和一个因子“5”相对应。但请注意,一个数的因式分解中因子“5”不一定对应着一个“0”,因为还需要一个因子“2”,才能实现其一一对应。

我们再回到原先的问题。这里先给出一个结论:
结论1:对于n的阶乘n!,其因式分解中,如果存在一个因子“5”,那么它必然对应着n!末尾的一个“0”。
下面对这个结论进行证明:
(1)当n < 5时, 结论显然成立。
(2)当n >= 5时,令n!= [5k * 5(k-1) * ... * 10 * 5] * a,其中 n = 5k + r (0 <= r <= 4),a是一个不含因子“5”的整数。
对于序列5k, 5(k-1), ..., 10, 5中每一个数5i(1 <= i <= k),都含有因子“5”,并且在区间(5(i-1),5i)(1 <= i <= k)内存在偶数,也就是说,a中存在一个因子“2”与5i相对应。即,这里的k个因子“5”与n!末尾的k个“0”一一对应。
我们进一步把n!表示为:n!= 5^k * k! * a(公式1),其中5^k表示5的k次方。很容易利用(1)和迭代法,得出结论1。

上面证明了n的阶乘n!末尾的“0”与n!的因式分解中的因子“5”是一一对应的。也就是说,计算n的阶乘n!末尾的“0”的个数,可以转换为计算其因式分解中“5”的个数。

令f(x)表示正整数x末尾所含有的“0”的个数, g(x)表示正整数x的因式分解中因子“5”的个数,则利用上面的的结论1和公式1有:
   f(n!) = g(n!) = g(5^k * k! * a) = k + g(k!) = k + f(k!)
所以,最终的计算公式为:
当0 < n < 5时,f(n!) = 0;
当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。

计算举例
f(5!) = 1 + f(1!) = 1
f(10!) = 2 + f(2!) = 2
f(20!) = 4 + f(4!) = 4
f(100!) = 20 + f(20!) = 20 + 4 + f(4!) = 24
f(1000!) = 200 + f(200!) = 200 + 40 + f(40!) = 240 + 8 + f(8!) = 248 + 1 + f(1) =249
...

相关讨论:
Pot_p(n!) = [n/p] + Pot_p([n/p]!)

递归使用这个公式就可以得到 Pot_p(n!) 的表达式。

可以参考柯召,孙琦的 《数论讲义》上册,数论函数部分。

另一很精致的方法来自柯召的 “数论讲义”,把 ord_p 简记为 ord:

* ord(ab)=ord(a)+ord(b)
  
* ord(n!) = [n/p] + ord( [n/p]! ),因为:
   ord(n!)
   = ord(1) + ... + ord(n)
   = ord(p) + ord(2p) + ... + ord([n/p]p)
   = (ord(1) + ord(p)) + (ord(2)+ord(p)) + ... + (ord([n/p])+ord(p))
   = (ord(1) +1) +(ord(2)+1) +...+(ord([n/p])+1)
   = [n/p]+ord( [n/p]! )

  [ [n/p]/p ] = [n/p^2]
   若把 n 写成 p 进制表达,则上面这个式子很好理解

现在只要递归地调用 ord(n!) = [n/p] + ord( [n/p]! ) 就可以得到 ord(n!) 的表达式:

[n/p]+[n/p^2]+[n/p^3] +....


一个和此问题有点关系的有趣问题是:
给定质数p, 求杨辉三角第n行有多少个元素被p整除.


嗯,柯召那本书的 pot 一节最后一个定理就是求 pot_p ( binomial(n, r) )   的表达式.
不是 close 的,一个关系式吧,在你给的这个题目用不上。

考虑 pot_p( binomial (n, r)),

[n/p^i] >=   [ (n-r)/p^i] + [r/p^i]. 如果 p   不整除 binomial(n, r), 意味着对所有的 i,等号都成立.

设 n = (n_m ... n_0 )_p, r = (r_s ... r_0)_p, 等号成立要求

n_m ... n_i = [n_m ... n_i . n_{i-1} ... n_0 - r_s ... r_i . r_{i-1} ... r_0] + r_s ... r_i
= n_m ... n_i + [0. n_{i-1} ... n_0 - 0. r_{i-1} ... r_0 ]

也就是

[0. n_{i-1} ... n_0 - 0. r_{i-1} ... r_0 ] =   0.

即对每个 i,   n mod p^i >= r mod p^i,能被 p 整除的个数为

n + 1 - (n_m+1)...(n_0+1).

程序:
递归与非递归

#include <iostream>
using namespace std;

#include <assert.h>

int f(int n)
{
    assert(n>0);
    if(n<5)
        return 0;
    else
        return f(n/5)+n/5;
}

int f_x(int n)
{
    assert(n>0);
    int count = 0;
    for(;n>=5;n=n/5)
        count += n/5;
       
    return count;
}

int main()
{
    int test[] = {5,10,20,100,1000};
   
    for(int i=0;i<5;i++)
    {
        cout<<f(test[i])<<endl;
    }
   
    cout<<endl;
    for(int i=0;i<5;i++)
    {
        cout<<f_x(test[i])<<endl;
    }
}
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值