计算N阶乘中尾部零的个数

计算n阶乘中尾部零的个数

假设 n = 5;

n! = 5 X 4 X 3 X 2 X 1 = 120。 尾部零的个数为:2。

假设 n = 15

n! = 15 X 14 X 13 X 12 X 11 X 10 X 9 X.....X 5 X 4 X 3 X 2 X 1 = 1307674368000。
尾部的零的个数为:3。

由以上可知:
第一个,当 n = 5 的时候,零的出现是由于 2 X 5。
第二个,当 n = 15的时候,零的出现是由于 10 X 【2 X 5 】X 【4(或者别的偶数) X 15】。
因此可以总结为,零的出现是由于 2X5 。

所以接下来我们只需要统计 2 X 5 的个数即可。我们可以知道 2 的个数是多余 5 的个数的,所以我们只需要统计 5 的个数即可查找出尾部零的个数。

经过以上分析,我们只需要统计阶乘中有多少 5 即可。

public long zeros(long n)
{
	long sum = 0;
	while(n != 0){
		sum += n / 5;
		n = n / 5;
	}
	
	return sum;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值