最大权闭合子图

最小割都没怎么碰过一下子遇到这种类型直接gg......

问题一般情况:选择某个东西可以得到一定收益,但选了它就必须选择它的一些后继,而不同物品可能有一些相同后继,求能选到的最大收益。

做法:详见某大佬博客https://blog.csdn.net/can919/article/details/77603353

建源点s,向正权点连流量为点权的边,正权点再向它后继连流量inf的边,建汇点t,负权点向汇点连点权绝对值边,跑一波最小割(即最大流),然后答案就是正权点和-最小割代价。

详细建图意义及正确性上面不知名大佬博客都有写。

例1:洛谷P4174 [NOI2006]最大获利

#pragma GCC optimize(3,"inline","Ofast")
#include<bits/stdc++.h>
using namespace std;
const int N=500010;
struct Dinic{
    public :int n,m,s,t;
    private:
    int to[N],next[N],las[N],num,head[N],dep[N],cur[N];
    bool bfs()
    {
        memset(dep,0,sizeof dep);
        queue<int>q;int nw;
        q.push(s);dep[s]=1;
        while(!q.empty())
        {
            nw=q.front();q.pop();
            for(int i=head[nw];i!=-1;i=next[i])
            {
                if(!dep[to[i]]&&las[i])dep[to[i]]=dep[nw]+1,q.push(to[i]);
            }
        }
        return dep[t];
    }
    int dfs(int pos,int flow)
    {
        if(pos==t)return flow;
        for(int &i=cur[pos];i!=-1;i=next[i])
        {
            if(las[i]&&dep[to[i]]==dep[pos]+1)
            {
                int tp=dfs(to[i],min(flow,las[i]));
                if(tp>0){
                    las[i]-=tp,las[i^1]+=tp;return tp;
                }
            }
        }
        return 0;
    }
    public:
    void init()
    {
        memset(next,-1,sizeof next);
        memset(head,-1,sizeof head);
        num=-1;
    }
    void add_edge(int u,int v,int w)
    {
        next[++num]=head[u],
        las[num]=w,to[num]=v,
        head[u]=num;
    }
    int dinic()
    {
        int ans=0,tp;
        while(bfs())
        {
            for(int i=0;i<=n;i++)cur[i]=head[i];
            while(tp=dfs(s,1e9))ans+=tp;
        }
        return ans;
    }
}D;
void rd(int &x)
{
    char c=getchar();x=0;
    while(c<'0'||c>'9')c=getchar();
    while(c>='0'&&c<='9')x=x*10+(int)(c-'0'),c=getchar();
}
int main()
{
    int u,v,w,n,m,tt=0;
    D.init();
    rd(n),rd(m),D.s=0,D.t=n+m+5;
    for(int i=1;i<=n;i++)
        rd(w),D.add_edge(0,i,w),D.add_edge(i,0,0);
    for(int i=1;i<=m;i++)
        rd(u),rd(v),rd(w),D.add_edge(u,i+n,1e9),D.add_edge(i+n,u,0),
        D.add_edge(v,i+n,1e9),D.add_edge(i+n,v,0),D.add_edge(i+n,D.t,w),D.add_edge(D.t,i+n,0),tt+=w;
    D.n=n+m+5;
    cout<<tt-D.dinic();
}

例2:P2762 太空飞行计划问题

需要输出方案,而所有在最后分层图上有dep的点这个集合就可以对应最小割的一种合法解(即这些点都是属于源点s的最大权闭合子图中),输出即可。

// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int N=210;
const int M=1010;
bool vis[N];
struct Dinic{	
    int s,t,n;
    int hd[N],nxt[M],to[M],las[M],cur[N],dep[N],tot;
    void init()
    {
        memset(hd,-1,sizeof hd);
        memset(nxt,-1,sizeof nxt);
        tot=-1;	
    }
    void add(int u,int v,int w)
    {
        nxt[++tot]=hd[u],to[tot]=v,las[tot]=w,hd[u]=tot;
        nxt[++tot]=hd[v],to[tot]=u,las[tot]=0,hd[v]=tot;
    }
    bool bfs()
    {
        queue<int>q;int nw;
        memset(dep,0,sizeof dep);
        dep[s]=1,q.push(s);
        while(!q.empty())
        {
            nw=q.front(),q.pop();
            for(int i=hd[nw];i!=-1;i=nxt[i])
            {
                if(!dep[to[i]]&&las[i])
                {
                    dep[to[i]]=dep[nw]+1;
                    q.push(to[i]);
                }
            }
        }
        return dep[t];
    }
    int dfs(int ps,int flow)
    {
        if(ps==t)return flow;
        int tp;
        for(int &i=cur[ps];i!=-1;i=nxt[i])
        {
            if(dep[to[i]]==dep[ps]+1&&las[i])
            {
                tp=dfs(to[i],min(flow,las[i]));
                if(tp)
                {
                    las[i]-=tp;
                    las[i^1]+=tp;
                    return tp;
                }
            }
        }
        return 0;
    }
    int dinic()
    {
        int res=0,tp;
        while(bfs())
        {
            for(int i=0;i<=n;i++)cur[i]=hd[i];
            while(tp=dfs(s,1e9))res+=tp;
        }
        return res;
    }
    void solve(int m)
    {
        for(int i=1;i<=m;i++)
            if(dep[i])printf("%d ",i);puts("");
        for(int i=m+1;i<=n-5;i++)
            if(dep[i])printf("%d ",i-m);puts("");
    }
}D;
int main()
{
    int m,n,nw,ans=0;char c;
    D.init();
    scanf("%d%d",&m,&n);
    D.s=0,D.t=n+m+5,D.n=n+m+5;
    for(int i=1;i<=m;i++)
    {
        scanf("%d",&nw),D.add(D.s,i,nw);
        ans+=nw,c=getchar();
        while(1)
        {
            nw=0;
            while(!isdigit(c)){if(c=='\n')goto lb;c=getchar();}
            while(isdigit(c))
            {
                nw=nw*10+c-48;
                c=getchar();
            }
            D.add(i,m+nw,1e9);
        }
        lb:;
    }
    for(int i=1;i<=n;i++)scanf("%d",&nw),D.add(i+m,D.t,nw);
    ans-=D.dinic();
    D.solve(m);
    printf("%d\n",ans);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值