最小割都没怎么碰过一下子遇到这种类型直接gg......
问题一般情况:选择某个东西可以得到一定收益,但选了它就必须选择它的一些后继,而不同物品可能有一些相同后继,求能选到的最大收益。
做法:详见某大佬博客https://blog.csdn.net/can919/article/details/77603353
建源点s,向正权点连流量为点权的边,正权点再向它后继连流量inf的边,建汇点t,负权点向汇点连点权绝对值边,跑一波最小割(即最大流),然后答案就是正权点和-最小割代价。
详细建图意义及正确性上面不知名大佬博客都有写。
例1:洛谷P4174 [NOI2006]最大获利
#pragma GCC optimize(3,"inline","Ofast")
#include<bits/stdc++.h>
using namespace std;
const int N=500010;
struct Dinic{
public :int n,m,s,t;
private:
int to[N],next[N],las[N],num,head[N],dep[N],cur[N];
bool bfs()
{
memset(dep,0,sizeof dep);
queue<int>q;int nw;
q.push(s);dep[s]=1;
while(!q.empty())
{
nw=q.front();q.pop();
for(int i=head[nw];i!=-1;i=next[i])
{
if(!dep[to[i]]&&las[i])dep[to[i]]=dep[nw]+1,q.push(to[i]);
}
}
return dep[t];
}
int dfs(int pos,int flow)
{
if(pos==t)return flow;
for(int &i=cur[pos];i!=-1;i=next[i])
{
if(las[i]&&dep[to[i]]==dep[pos]+1)
{
int tp=dfs(to[i],min(flow,las[i]));
if(tp>0){
las[i]-=tp,las[i^1]+=tp;return tp;
}
}
}
return 0;
}
public:
void init()
{
memset(next,-1,sizeof next);
memset(head,-1,sizeof head);
num=-1;
}
void add_edge(int u,int v,int w)
{
next[++num]=head[u],
las[num]=w,to[num]=v,
head[u]=num;
}
int dinic()
{
int ans=0,tp;
while(bfs())
{
for(int i=0;i<=n;i++)cur[i]=head[i];
while(tp=dfs(s,1e9))ans+=tp;
}
return ans;
}
}D;
void rd(int &x)
{
char c=getchar();x=0;
while(c<'0'||c>'9')c=getchar();
while(c>='0'&&c<='9')x=x*10+(int)(c-'0'),c=getchar();
}
int main()
{
int u,v,w,n,m,tt=0;
D.init();
rd(n),rd(m),D.s=0,D.t=n+m+5;
for(int i=1;i<=n;i++)
rd(w),D.add_edge(0,i,w),D.add_edge(i,0,0);
for(int i=1;i<=m;i++)
rd(u),rd(v),rd(w),D.add_edge(u,i+n,1e9),D.add_edge(i+n,u,0),
D.add_edge(v,i+n,1e9),D.add_edge(i+n,v,0),D.add_edge(i+n,D.t,w),D.add_edge(D.t,i+n,0),tt+=w;
D.n=n+m+5;
cout<<tt-D.dinic();
}
例2:P2762 太空飞行计划问题
需要输出方案,而所有在最后分层图上有dep的点这个集合就可以对应最小割的一种合法解(即这些点都是属于源点s的最大权闭合子图中),输出即可。
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int N=210;
const int M=1010;
bool vis[N];
struct Dinic{
int s,t,n;
int hd[N],nxt[M],to[M],las[M],cur[N],dep[N],tot;
void init()
{
memset(hd,-1,sizeof hd);
memset(nxt,-1,sizeof nxt);
tot=-1;
}
void add(int u,int v,int w)
{
nxt[++tot]=hd[u],to[tot]=v,las[tot]=w,hd[u]=tot;
nxt[++tot]=hd[v],to[tot]=u,las[tot]=0,hd[v]=tot;
}
bool bfs()
{
queue<int>q;int nw;
memset(dep,0,sizeof dep);
dep[s]=1,q.push(s);
while(!q.empty())
{
nw=q.front(),q.pop();
for(int i=hd[nw];i!=-1;i=nxt[i])
{
if(!dep[to[i]]&&las[i])
{
dep[to[i]]=dep[nw]+1;
q.push(to[i]);
}
}
}
return dep[t];
}
int dfs(int ps,int flow)
{
if(ps==t)return flow;
int tp;
for(int &i=cur[ps];i!=-1;i=nxt[i])
{
if(dep[to[i]]==dep[ps]+1&&las[i])
{
tp=dfs(to[i],min(flow,las[i]));
if(tp)
{
las[i]-=tp;
las[i^1]+=tp;
return tp;
}
}
}
return 0;
}
int dinic()
{
int res=0,tp;
while(bfs())
{
for(int i=0;i<=n;i++)cur[i]=hd[i];
while(tp=dfs(s,1e9))res+=tp;
}
return res;
}
void solve(int m)
{
for(int i=1;i<=m;i++)
if(dep[i])printf("%d ",i);puts("");
for(int i=m+1;i<=n-5;i++)
if(dep[i])printf("%d ",i-m);puts("");
}
}D;
int main()
{
int m,n,nw,ans=0;char c;
D.init();
scanf("%d%d",&m,&n);
D.s=0,D.t=n+m+5,D.n=n+m+5;
for(int i=1;i<=m;i++)
{
scanf("%d",&nw),D.add(D.s,i,nw);
ans+=nw,c=getchar();
while(1)
{
nw=0;
while(!isdigit(c)){if(c=='\n')goto lb;c=getchar();}
while(isdigit(c))
{
nw=nw*10+c-48;
c=getchar();
}
D.add(i,m+nw,1e9);
}
lb:;
}
for(int i=1;i<=n;i++)scanf("%d",&nw),D.add(i+m,D.t,nw);
ans-=D.dinic();
D.solve(m);
printf("%d\n",ans);
}