【最大权闭合子图、最大密度子图】最小割应用

最大权闭合子图

img

闭合图有一点点序关系(?),例如要做这件事,必须先完成前面的事情(类似于拓扑序的结构?)

例如 Luogu P2805 NOI 2009 植物大战僵尸,该题中僵尸攻击植物的次序具备一个拓扑序结构,即先攻击一些植物后才能攻击另外的一些植物,有点类似于闭合图。

最大权闭合图一般用网络流求解:

​ 建图的思路:

​ 统计出正权点,负权点,源点向正权点 u u u链接 s → u , f = w [ u ] s \rightarrow u,f = w[u] su,f=w[u],负权点 v v v链接 v → t , f = − w [ v ] v \rightarrow t,f = -w[v] vt,f=w[v] ,原先图中的边 u → v , f = ∞ u \rightarrow v,f = \infin uv,f= ,然后跑最小割,最后答案为 正权边之和 - 最小割。

​ 该方法的正确性参考 论文 《最小割模型在信息学竞赛的应用》

​ 粗俗点理解的话,因为最小割是使得该网络不流通的最小代价。

​ 那么如果说,割掉正权边,也就是不选择该正权点以及后续的后继,如果割掉负权边,则是选择正权点,并为此后继付出代价。

​ 例如: P2762 太空飞行计划问题


最大密度子图

​ 问题:

最大密度子图

​ 知识点引入: 分数规划

​ 二分答案: D ′ = ∣ E ′ ∣ / ∣ V ′ ∣ → E − m i d ∗ ∣ V ′ ∣ D' = |E'| / |V'| \rightarrow E - mid*|V'| D=E/V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值