最大权闭合子图

闭合图有一点点序关系(?),例如要做这件事,必须先完成前面的事情(类似于拓扑序的结构?)
例如 Luogu P2805 NOI 2009 植物大战僵尸,该题中僵尸攻击植物的次序具备一个拓扑序结构,即先攻击一些植物后才能攻击另外的一些植物,有点类似于闭合图。
最大权闭合图一般用网络流求解:
建图的思路:
统计出正权点,负权点,源点向正权点 u u u链接 s → u , f = w [ u ] s \rightarrow u,f = w[u] s→u,f=w[u],负权点 v v v链接 v → t , f = − w [ v ] v \rightarrow t,f = -w[v] v→t,f=−w[v] ,原先图中的边 u → v , f = ∞ u \rightarrow v,f = \infin u→v,f=∞ ,然后跑最小割,最后答案为 正权边之和 - 最小割。
该方法的正确性参考 论文 《最小割模型在信息学竞赛的应用》
粗俗点理解的话,因为最小割是使得该网络不流通的最小代价。
那么如果说,割掉正权边,也就是不选择该正权点以及后续的后继,如果割掉负权边,则是选择正权点,并为此后继付出代价。
例如: P2762 太空飞行计划问题
最大密度子图
问题:
知识点引入: 分数规划
二分答案: D ′ = ∣ E ′ ∣ / ∣ V ′ ∣ → E − m i d ∗ ∣ V ′ ∣ D' = |E'| / |V'| \rightarrow E - mid*|V'| D′=∣E′∣/∣V′∣→