题目地址:http://poj.org/problem?id=2299
学过线代就知道这题就是求逆序数。
逆序数可以用树状数组来解,比方说数字是9,1,0,5,4。那么我就模拟出一个X轴,从左向右读取数字。读取9,则用sum求和比9小的有哪些,那么比9大的个数就是总个数减比9小的,即ans+=(sum(n)-sum(b[i]));这样就可以统计逆序数。
此题数据范围特别大,0 ≤ a[i] ≤ 999,999,999,如果硬来肯定行不通。而数字个数范围较小,n < 500,000,考虑离散化处理。
比方说n=5,数字分别是1234,1234567,123456,12345678,12345,那么我就将其先编好号(用结构体),再排序,则是1234,12345,123456,1234567,12345678,我就分配额外的数组空间,存储这五个数对应的id:b[a[i].id]=i; 故b数组按顺序依次是1,4,3,5,2。这个数组的逆序数和a数组的逆序数是完全相同的,这样数字的范围就大大减小了。这就是离散化的过程。
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<cmath>
#include<algorithm>
using namespace std;
int b[500005],c[500005],n;
struct node{
int num,id;
}a[500005];
bool cmp(node a,node b)
{
return a.num<b.num;
}
void update(int i, int x)
{
while(i<=n)
{
c[i]+=x;
i+=i&(-i);
}
}
int sum(int i)
{
int s=0;
while(i>0)
{
s+=c[i];
i-=i&(-i);
}
return s;
}
int main()
{
int i;
long long ans;
while(scanf("%d",&n),n)
{
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
for(i=1;i<=n;i++)
{
scanf("%d",&a[i].num);
a[i].id=i;
}
sort(a+1,a+n+1,cmp);
b[a[1].id]=1;
for(i=2;i<=n;i++)
{
if(a[i].num!=a[i-1].num)
b[a[i].id]=i;
else b[a[i].id]=b[a[i-1].id];
}
ans=0;
for(i=1;i<=n;i++)
{
update(b[i],1);
ans+=(sum(n)-sum(b[i]));
}
printf("%I64d\n", ans);
}
return 0;
}