POJ2299 树状数组+离散化

题目地址:http://poj.org/problem?id=2299


学过线代就知道这题就是求逆序数。

逆序数可以用树状数组来解,比方说数字是9,1,0,5,4。那么我就模拟出一个X轴,从左向右读取数字。读取9,则用sum求和比9小的有哪些,那么比9大的个数就是总个数减比9小的,即ans+=(sum(n)-sum(b[i]));这样就可以统计逆序数。

此题数据范围特别大,0 ≤ a[i] ≤ 999,999,999,如果硬来肯定行不通。而数字个数范围较小,n < 500,000,考虑离散化处理。

比方说n=5,数字分别是1234,1234567,123456,12345678,12345,那么我就将其先编好号(用结构体),再排序,则是1234,12345,123456,1234567,12345678,我就分配额外的数组空间,存储这五个数对应的id:b[a[i].id]=i;   故b数组按顺序依次是1,4,3,5,2。这个数组的逆序数和a数组的逆序数是完全相同的,这样数字的范围就大大减小了。这就是离散化的过程。

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<cmath>
#include<algorithm>
using namespace std;
int b[500005],c[500005],n;
struct node{
    int num,id;
}a[500005];
bool cmp(node a,node b)
{
    return a.num<b.num;
}
void update(int i, int x)
{
    while(i<=n)
    {
        c[i]+=x;
        i+=i&(-i);
    }
}
int sum(int i)
{
    int s=0;
    while(i>0)
    {
        s+=c[i];
        i-=i&(-i);
    }
    return s;
}
int main()
{
    int i;
    long long ans;
    while(scanf("%d",&n),n)
    {
        memset(b,0,sizeof(b));
        memset(c,0,sizeof(c));
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i].num);
            a[i].id=i;
        }
        sort(a+1,a+n+1,cmp);
        b[a[1].id]=1;
        for(i=2;i<=n;i++)
        {
            if(a[i].num!=a[i-1].num)
                b[a[i].id]=i;
            else b[a[i].id]=b[a[i-1].id];
        }
        ans=0;
        for(i=1;i<=n;i++)
        {
            update(b[i],1);
            ans+=(sum(n)-sum(b[i]));
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值