数论——素数问题

素数的判定

试除法

(1)普通

复杂度: O ( n ) O(n) O(n)

bool prime(int x){//判断x是不是质数,是返回true,不是返回false 
    if(x <= 1) return false; 
    for(int i = 2; i < x; i ++){
        if(x % i == 0) return false;
    }
    return true;
}

(2)改进

复杂度: O ( n ) O(\sqrt{n}) O(n )

bool prime(int x){
    if(x <= 1) return false; 
    for(int i = 2; i <= sqrt(x); i ++){
        if(x % i == 0) return false;
    }
    return true;
}
//用乘法避免根号的误差
bool prime(int x){
    if(x <= 1) return false; 
    for(int i = 2; i * i <= x; i ++){
        if(x % i == 0) return false;
    }
    return true;
}

埃式筛

当要求的 N N N 不是特别大时,且要求多次判定,可以先预处理出 1 ∼ N 1\sim N 1N N N N 个数是否是素数,就是打表

**原理:**质数的倍数都不是质数

比如 2 2 2是质数,那么 4 , 6 , 8 , 10 , 12... 4,6,8,10,12... 4,6,8,10,12...都不是质数

然后看 3 3 3是质数,那么 6 , 9 , 12 , 15 , 18 , 21... 6,9,12,15,18,21... 6,9,12,15,18,21...都不是质数

然后看 4 4 4 4 4 4已经被 2 2 2标记为合数了,所以跳过

然后看 5 5 5这样一直循环下去。

时间复杂度: O ( n l o g l o g n ) O(nloglogn) O(nloglogn)

const int N = 100000 + 5;
bool M[N];//M[i]标记i是不是质数
int total, prime[N];//prime[i]用来表示第i个质数 

void AiSieve() {
	for (int i = 2; i < N; i++) {
		M[i] = true;
	}

	for (int i = 2; i < N; i++) {
		if (M[i]) {
			prime[total++] = i;
			for (int j = i * i; j <= N; j += i)
				M[j] = false;
		}
	}
}

线性素数筛选(欧拉筛)

在埃氏筛法的思想上,欧拉筛可以保证每个合数都被它最小的质因数筛去,时间复杂度为 O ( n ) O(n) O(n)

比如 12 12 12,既是 2 2 2的倍数,也是 3 3 3的倍数,在埃氏筛中,会被 2 2 2 3 3 3筛选两次,而在欧拉筛中 12 12 12只会被 6 ∗ 2 6*2 62筛选,而不会被 4 ∗ 3 4*3 43筛选。

核心思想:

根据算数基本定理,任何一个大于 1 1 1 的自然数 N N N ,如果 N N N 不为质数,那么 N N N 可以唯一分解成有限个质数的乘积,每轮第二层循环筛去当前数字 i i i 和所有小于等于它最小素因数的素数进行乘积得到的合数,重点就在这一行代码:

if (i % prime[j] == 0) break;

假设当前 i = 6 i=6 i=6 6 6 6 遇到了自己的最小素因子 2 2 2break 了出来, 2 2 2 6 6 6 来说是最小素因子,所以把 12 = 6 ∗ 2 12=6*2 12=62 筛去了,并且 2 2 2 对于 18 = 6 ∗ 3 、 24 = 6 ∗ 4 18=6*3、24=6*4 18=6324=64 来说都必然也是最小素因子,应该让 18 = 9 ∗ 2 、 24 = 12 ∗ 2 18=9*2、24=12*2 18=9224=122 来筛去,所以要break 出来,保证每个合数都被它最小的质因数筛去,这也是为什么 12 12 12 没有被 4 ∗ 3 4*3 43 筛去的原因。

const int N = 100000 + 5;
bool M[N];//M[i]标记i是不是质数 
int prime[N], total;//prime[i]用来表示第i个质数 
void EulerSieve() {
    for (int i = 2; i < N; i++) {
        M[i] = true;
    }
    for (int i = 2; i < N; i++) {
        if (M[i]) prime[total++] = i;//把质数存起来 
        //筛去当前数字i和所有小于等于它最小素因数的素数进行乘积得到的合数
        for (int j = 0; j < total && i * prime[j] < N; j++) {
            M[i * prime[j]] = false;
            if (i % prime[j] == 0) 
                break;
        }
    }
}

拓展应用

上述算法的除去打素数表,我们可以根据算法的思想做一些别的事情。

(1)埃氏筛,获取 1 ∼ N 1\sim N 1N数的所有素因子

const int N = 100000 + 5;
vector<int> prime_factor[N];
void get_prime_factor() {
    for (int i = 2; i < N; i++) {
        if (prime_factor[i].size() == 0) {//如果i是质数 
            for (int j = i; j < N; j += i) {
                prime_factor[j].push_back(i);
            }
        }
    }
}

(2)埃氏筛,获取1~N数的所有素因数分解

const int N = 100000 + 5;
vector<int> prime_factor[N];
void factorization() {
    for (int i = 2; i < N; i++) {
        if (prime_factor[i].size() == 0) {//如果i是质数 
            for (int j = i; j < N; j += i) {
                int temp = j;
                while (temp >= i) {
                    if (temp % i == 0) {
                        prime_factor[j].push_back(i);
                        temp /= i;
                    }
                    else break;
                }
            }
        }
    }
}

Miller - Rabin素数测试

如果问一个特别大的数是否为素数,此时就需要用一些特殊办法了

本段落参考:http://www.matrix67.com/blog/archives/234

费马小定理:

p p p是质数,且 g c d ( a , p ) = 1 gcd(a,p) = 1 gcd(a,p)=1,那么 a p − 1 m o d   p = 1 a^{p-1}mod\ p=1 ap1mod p=1

根据逆反命题的等价性,不满足 2 ( n − 1 ) m o d   n = 1 2^{(n-1)} mod\ n = 1 2(n1)mod n=1 n n n一定不是素数;如果满足的话则多半是素数。那么如果我只计算 2 ( n − 1 ) m o d   n 2^{(n-1)} mod\ n 2(n1)mod n的值,那么素性判断出错的概率有多少?在前10亿个自然数中共有50847534个素数,而满足 2 ( n − 1 ) m o d   n = 1 2^{(n-1)} mod\ n = 1 2(n1)mod n=1的合数n有5597个。这样算下来,算法出错的可能性约为0.00011。这个概率太高了,我们刚才只考虑了 a = 2 a=2 a=2的情况。对于式子 a ( n − 1 ) m o d   n a^{(n-1)} mod\ n a(n1)mod n,取不同的a可能导致不同的结果。一个合数可能在 a = 2 a=2 a=2时通过了测试,但 a = 3 a=3 a=3时的计算结果却排除了素数的可能。于是,人们扩展了伪素数的定义,称满足 a ( n − 1 ) m o d   n = 1 a^{(n-1)} mod\ n = 1 a(n1)mod n=1的合数n叫做以a为底的伪素数。前10亿个自然数中同时以2和3为底的伪素数只有1272个,这个数目不到刚才的 1 4 \frac{1}{4} 41。这告诉我们如果同时验证 a = 2 a=2 a=2 a = 3 a=3 a=3两种情况,算法出错的概率降到了0.000025。容易想到,选择用来测试的a越多,算法越准确。通常我们的做法是,随机选择若干个小于待测数的正整数作为底数a进行若干次测试,只要有一次没有通过测试就可以判定不是素数。这就是费马素性测试。

但是居然就有这样的合数,假设为n,它可以通过所有a(小于n,且满足 ( g c d , n ) = 1 (gcd,n)=1 (gcd,n)=1的数)的测试(这个说法不准确,详见我在地核楼层的回复)。而且第一个这样极端的伪素数小得惊人,仅仅是一个三位数,561。前10亿个自然数中这样的数有600多个。

Miller和Rabin两个人的工作让Fermat素性测试迈出了革命性的一步,建立了传说中的Miller-Rabin素性测试算法。新的测试基于下面的定理:

二次探测定理:

p p p为质数, x 2 ≡ 1 ( m o d   ) p x^{2}\equiv 1(mod\ )p x21(mod )p,则有 x ≡ ( m o d   p ) x\equiv (mod\ p) x(mod p) x ≡ p − 1 ( m o d   p ) x\equiv p-1(mod\ p) xp1(mod p)

算法描述:

在这里插入图片描述

Miller-Rabin素性测试同样是不确定算法,我们把可以通过以a为底的Miller-Rabin测试的合数称作以a为底的强伪素数。第一个以2为底的强伪素数为2047。第一个以2和3为底的强伪素数则大到1 373 653。对于大数的素性判断,目前Miller-Rabin算法应用最广泛。一般底数仍然是随机选取,但当待测数不太大时,选择测试底数就有一些技巧了。比如,如果被测数小于4 759 123 141,那么只需要测试三个底数2, 7和61就足够了。当然,你测试的越多,正确的范围肯定也越大。如果你每次都用前7个素数(2, 3, 5, 7, 11, 13和17)进行测试,所有不超过341 550 071 728 320的数都是正确的。如果选用2, 3, 7, 61和24251作为底数,那么 1 0 1 6 10^16 1016内唯一的强伪素数为46 856 248 255 981。这样的一些结论使得Miller-Rabin算法在OI中非常实用。通常认为,Miller-Rabin素性测试的正确率可以令人接受,随机选取k个底数进行测试算法的失误率大概为 4 − k 4^{-k} 4k

完整代码:

#include <iostream>
#include <math.h>
#include <time.h>
using namespace std;
int prime[5] = { 2, 3, 7, 61,24251 };

long long quickPower(long long down, long long e, long long mod) {
    long long a = down, res = 1;
    while (e) {
        if (e & 1)
            res = ((res % mod) * (a % mod)) % mod;
        a = ((a % mod) * (a % mod)) % mod;
        e >>= 1;
    }
    return res;
}
bool MillerRabin(long long p) {
    if (p == 1 || p == 0)return false;
    for (int i = 0; i < 5; i++) {
        if (p == prime[i])return true;
        if (p % prime[i] == 0 || p < prime[i])return false;
        int a = i, e = p - 1;
        if (p % prime[i] == 0 || e & 1)return false;
        while (!(e & 1)) {
            int res = quickPower(a, e, p);
            if (res == 1)
                e /= 2;
            else if (res == p - 1)
                return true;
            else 
                return false;
        }
    }
    return true;
}

int main() {
    long long N;
    while (cin >> N) {
        if (MillerRabin(N)) {
            cout << "Y" << endl;
        }
        else
            cout << "N" << endl;
    }
}

素数的一些神奇性质

(1)所有大于 2 2 2的素数都可以唯一地表示成两个平方数之差。

证明如下:

在这里插入图片描述

(2)麦森数

如果 2 p − 1 2^{p}-1 2p1是素数,其中指数 p p p一定也是素数。

证明如下:

原命题的逆否命题为:如果 p p p不是素数,则 2 p − 1 2^{p}-1 2p1不是素数。

如果p不是素数,可以假设 p = m ⋅ n p=m\cdot n p=mn

2 p − 1 = ( 2 m ) n − 1 = ( x − 1 ) ( x n − 1 + x n − 2 + . . . + 1 ) , x = 2 m 2^p-1=(2^m)^{n}-1=(x-1)(x^{n-1}+x^{n-2}+...+1), x=2^m 2p1=(2m)n1=(x1)(xn1+xn2+...+1),x=2m

逆否命题成立,原命题成立。

拓展:

2 p − 1 2^{p}-1 2p1的位数, 2 p − 1 2^{p}-1 2p1 2 p 2^{p} 2p的位数是相同的,因为 2 p 2^{p} 2p最后一个一定不为 0 0 0,可以直接求 2 p 2^{p} 2p的位数。设 k = 2 p k=2^{p} k=2p,根据 1 0 n 10^n 10n的位数为 n + 1 n+1 n+1,只要想办法把 k = 2 p k=2^{p} k=2p中的底数 2 2 2转换成 10 10 10,指数 + 1 +1 +1就是位数了。根据 1 0 l o g 10 2 = 2 10^{log_{10}{2}}=2 10log102=2,于是 k = ( 1 0 l o g 10 2 ) p k=(10^{log_{10}{2}})^p k=(10log102)p,把 p p p乘进去就是 k = 1 0 p ⋅ l o g 10 2 k=10^{p\cdot log_{10}{2}} k=10plog102,所以位数就是 p ⋅ l o g 10 2 + 1 p\cdot log_{10}{2}+1 plog102+1(cmath中自带log10()函数)

(3)当 n n n为大于 2 2 2的整数时, 2 n + 1 2^{n}+1 2n+1 2 n − 1 2^{n}-1 2n1两个数中,如果其中一个数是素数,那么另一个数一定是合数。

证明如下:

2 n 2^n 2n一定不能被 3 3 3整除

如果$ (2 ^ {n} % 3 == 1)$,则一定有: 2 n − 1 % 3 = = 0 2 ^{ n} - 1 \% 3 == 0 2n1%3==0

如果 ( 2 n % 3 = = 2 ) (2 ^ {n} \% 3 == 2) (2n%3==2),则一定有: 2 n + 1 % 3 = = 0 2 ^{ n} + 1 \% 3 == 0 2n+1%3==0;

也就是说, 2 n + 1 2^{n}+1 2n+1 2 n − 1 2^{n}-1 2n1中至少有一个是合数。

(4)大于 3 3 3的素数一定是 6 6 6的倍数$ ±1 $

证明如下:

素数 ± 1 ±1 ±1必然是偶数,一定可以被2整除

素数除以 3 3 3,如果余 1 1 1,减 1 1 1后余 0 0 0,;如果余 2 2 2,加 1 1 1后余 0 0 0,即可以素数 ± 1 ±1 ±1后被 3 3 3整除

结合上面两行,素数 ± 1 ±1 ±1,一定可以被 6 6 6整除

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值