Chapter-5_统计推断_贝叶斯学派

Chapter-5_统计推断_贝叶斯学派

本文内容摘自:https://seeing-theory.brown.edu/bayesian-inference/cn.html

贝叶斯学派的思想是用数据来更新特定假设的概率。

1. 贝叶斯公式

假设你最近去看了医生,并决定检查一下自己有没有得一种罕见的疾病。如果你很不幸地收到了阳性的结果,你可能最想知道的是“已知这个检查结果,我真的得了这种病的概率是多少?”(毕竟医疗检查并不是100%准确的。)有了贝叶斯公式,我们就可以准确地计算出上述事件的概率
P ( 患病 ∣ 阳 性 ) = P ( 阳 性 ∣ 患病 ) P ( 患病 ) P ( 阳 性 ) P(\text{患病}|阳性) = \dfrac{P(阳性|\text{患病})P(\text{患病})}{P(阳性)} P(患病)=P()P(患病)P(患病)
从上述公式我们可以看出,已知检查结果阳性患病的后验还依赖于概率患病的先验概率P(患病)。我们可以把这个患病的先验概率理解为人群中患有这个疾病的概率。

拖拽下方的柱状图来调整这个先验概率。

fig

另一方面,后验概率还依赖于检查的准确程度:一个健康的人收到阴性结果的概率是多少?一个患者收到阳性结果的概率是多少?你可以在下方确定这两者的概率。

fig

最后,我们还需要知道这个检查给出阳性结果的总概率。你可以点击下方的按钮来生成一些样本,模拟检查过程。

fig
实验结果如下:
fig
再次实验:

fig
实验结果如下:
fig
以上就是计算后验概率所需要的所有信息。下方的表格给出了利用贝叶斯公式算出的其他后验概率

fig
fig

2. 似然函数

在统计学中, 似然函数的定义是:
L ( θ ∣ x ) = P ( x ∣ θ ) L(\theta | x) = P(x | \theta) L(θx)=P(xθ)
似然函数的概念在频率学派贝叶斯学派中都有重要的作用。

2.1 均匀分布

fig
选择样本大小n然后生成样本。

fig
实验结果如下:

拖动紫色滑块(改变θ的值)并观察似然函数。

fig

2.2 正太分布

fig
实验结果如下:

fig

2.3 伯努利分布

fig
实验结果如下:
fig

3. 从先验概率到后验概率

贝叶斯统计的核心思想利用观察到的数据来更新先验信息。考虑一枚不均匀的硬币,抛出正面的概率为p。下面的紫色滑块可以调整p的大小(假设在现实中我们并不知道p)。

fig
粉色的滑块可以调整 p 的先验分布。这里我们假定p的先验分布是 Beta(α,β),在图中粉色曲线代表了先验概率的密度分布函数。
fig
当我们重复抛硬币时,我们不断更新关于 p 的后验分布。这个后验分布就是我们对 p 的最好估计,同时这也是我们相对我们下一次抛硬币结果的先验信息。

fig

实验结果如下:
fig
再次实验:

fig
实验结果如下:
fig
再次实验:
fig
实验结果如下:
fig

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值