整数划分的多种题型

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/captain_Ben/article/details/49356153

The first problem 指把一个正整数n写成多个大于等于1且小于等于其本身的整数的和,则其中各加数所构成的集合为n的一个划分,求出n的所有划分个数。

这道题采用递归的方法,我们定义一个f[n][m]表示n的m划分(即划分中最大值不超过m)。

由此我们便可以得到以下的推论:

1.当n=1,只有一种划分为{1}。当m=1时,只有一种划分即为分为n个1:{1,1,1,1,1,.....}。                             f[n][m]=1;     (n=1||m=1)

2.当n=m时,可分为两种情况:(a)划分中包含n,即{n}。(b)划分中不包含n,这是最大的数也比n小,所以f[n][n]=1+f[n][n-1];

3.当n>m,又可根据划分中是否包含m分为两种情况,综合起来就是     f(n, m) = f(n-m, m)+f(n,m-1);

#include<iostream>
#include<string>
#include<string.h>
#include<cstdio>
#include<algorithm>
using namespace std;

int fun(int n, int m)
{
	if(n == 1 || m == 1) return 1;
	else if(n < m) return fun(n, n);
	else if(n == m) return (1 + fun(n, m - 1));
	else return (fun(n, m - 1) + fun(n - m, m));
}

int main()
{
	//freopen("Input.txt", "r", stdin);
	int N;
	scanf("%d", &N);
	while(N--)
	{
		int n;
		scanf("%d", &n);
		printf("%d\n", fun(n, n));
	}
	return 0;
}

The second problem:把一个数用n个乘号分隔开,使各部分的乘积最大。

这道题是动归,f[i][j]表示前i个数用j个乘号分开的乘积最大值。

#include<cstdio>//加入m个乘号 
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int m,t;
char str[1000];
int n;
int num[2000];
int shu[2000][2000];
int f[2000][10000];
void read()
{
	scanf("%d\n",&t);
	for(int q=1;q<=t;q++)
	{	
	    scanf("%s",str);
		scanf("%d",&m);
		n=strlen(str);
		for(int j=0;j<n;j++)
    	{
    		num[j+1]=str[j]-'0';
    	}
		for(int i=1;i<=n;i++)
    	{
    		for(int k=i;k<=n;k++)*****
    		{
    			shu[i][k]=shu[i][k-1]*10+num[k];//第i个到第j个组成的数 ***
    		}
    	}
    	for(int p=1;p<=n;p++)
        	f[p][0]=shu[1][p];//初始化**** 
    }
}
void dp()
{
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			for(int k=1;k<=i-1;k++)
			{
				f[i][j]=max(f[i][j],f[k][j-1]*shu[i][i]);
			}
		}
    }
	printf("%d\n",f[n][m]);
}
int main()
{
	read();
	for(int q=1;q<=t;q++) dp();
	return 0;
}


展开阅读全文

没有更多推荐了,返回首页