用Python numpy实现非线性回归

如图是非线性关系数据的散点图

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

# 读取xlsx文件中的数据
data = pd.read_excel('./abalone.xlsx')

# 提取需要绘制的列数据
x_data = data['Length']
y_data = data['Whole weight']

params = np.polyfit(x_data, y_data, 10)  # 拟合曲线
params_func = np.poly1d(params)  # 生成拟合函数
y_predict = params_func(x_data)  # 预测值

# 绘制原始数据散点图
plt.scatter(x_data, y_data,color='blue', label='.')
# 绘制拟合曲线
plt.plot(x_data, y_predict, color='red', label='fit')
plt.show()

注意,绘制拟合曲线的时候需要将原始的x轴数据去重然后升序,否则会像下面一样出现多条曲线

将原始x去重排序后,用生成的拟合函数生成对应y,在图上绘制,结果如下

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值