如图是非线性关系数据的散点图
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
# 读取xlsx文件中的数据
data = pd.read_excel('./abalone.xlsx')
# 提取需要绘制的列数据
x_data = data['Length']
y_data = data['Whole weight']
params = np.polyfit(x_data, y_data, 10) # 拟合曲线
params_func = np.poly1d(params) # 生成拟合函数
y_predict = params_func(x_data) # 预测值
# 绘制原始数据散点图
plt.scatter(x_data, y_data,color='blue', label='.')
# 绘制拟合曲线
plt.plot(x_data, y_predict, color='red', label='fit')
plt.show()
注意,绘制拟合曲线的时候需要将原始的x轴数据去重然后升序,否则会像下面一样出现多条曲线
将原始x去重排序后,用生成的拟合函数生成对应y,在图上绘制,结果如下