再生核希尔伯特空间(RKHS)漫谈(一):定义

欢迎访问我的个人博客https://qddmj.cn,有更多最新的内容
RKHS系列文章点此进入

讲RKHS的文章有很多,希望这一系列文章能带给你新的思考。

这次系列文章主要进行RKHS相关的理论推导,以便对机器学习中的核方法和核技巧有更深的理解。

我们熟悉的SVM的推导中包含了一些数学技巧,包括最优化理论中的对偶问题,以及初学者很难理解的Reproducing Kernel Hilbert Space (RKHS)。其实RKHS是泛函分析中的一个研究对象,它的难点主要在一些泛函分析的前置知识,只要理解了泛函的一些基本概念和定理,再来看RKHS就会容易很多。

SVM中的Kernel Trick

SVM中的核技巧,就是在样本线性不可分的情况下,将样本映射到一个更高维的空间,也许在更高维空间,样本是线性可分的。

在更高维空间中,可以理解成我们给其添加了更多特征,做了更多特征交叉和非线性组合,期望这些新增加的特征可以帮助我们进行分类。在《统计学习理论》中,第10章有说过,尽管特征空间维度很高,如果样本数量足够多,我们可以以一个小的误差期望来构造分类超平面,这个超平面的泛化能力是不错的。

原SVM的超平面:
f ( x ) = w ⊤ x + b f(\mathrm{x})=\mathrm{w}^\top\mathrm{x}+b f(x)=wx+b

映射到高维的超平面:

f ( x ) = w ⊤ Φ ( x ) + b f(\mathrm{x})=\mathrm{w}^\top\Phi(\mathrm{x})+b f(x)=wΦ(x)+b

Φ \Phi Φ将样本映射到高维空间。得到的分类器为:

f ( x ) = ∑ i N α i y i x i ⊤ x + b → f ( x ) = ∑ i N α i y i Φ ( x i ) ⊤ Φ ( x ) + b \begin{aligned} &f(\mathrm{x})=\sum_i^N \alpha_i y_i \mathrm{x}_i^\top \mathrm{x}+b \\ \rightarrow &f(\mathrm{x})=\sum_i^N \alpha_i y_i \Phi(\mathrm{x}_i)^\top \Phi(\mathrm{x})+b \end{aligned} f(x)=iNαiyixix+bf(x)=i

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值