再生核希尔伯特空间(RKHS)漫谈(二):Mecer‘s Theorem

本文深入探讨Mercer's Theorem及其在再生核希尔伯特空间(RKHS)中的应用。通过Mercer定理,证明核函数如何构成RKHS,并解释其在支持向量机(SVM)中的角色,揭示非线性特征映射的内在机制。
摘要由CSDN通过智能技术生成

欢迎访问我的个人博客https://qddmj.cn,有更多最新的内容
RKHS系列文章点此进入

上一章讨论了RKHS相关的定义,我们知道了只要找到一个正定的核函数(positive define kernel),那么一定有这样一个希尔伯特空间,里面的所有元素可以用 f ( x ) = ⟨ f ( ⋅ ) , k ( ⋅ , x ) ⟩ , ∀ f ∈ H f(x)=\langle f(\cdot),k(\cdot,x)\rangle , \forall f\in \mathcal{H} f(x)=f(),k(,x),fH“再生”出来,利用这个性质可以让我们用核函数代替内积。

现在我们准备深入RKHS看看。首先,我们有两条路可以证明核函数可以构成一个RKHS。

  1. Mercer’s Theorem
  2. Moore-Aronszajn’s Theorem

这一章来证明第一个命题:Mecer’s Theorem。我们上一篇博客给出了核函数的概念,Mecer’s Theorem比核函数的现代定义出现得要早,因此Mercer理论中的核函数定义稍有不同,显得更为严格一些。Moore-Aronszajn’s Theorem是后来发展的,现代用的比较多,它的核函数定义更为宽松,更为一般。

Mercer’s Theorem:

k k k [ a , b ] × [ a , b ] [a,b]\times[a,b] [a,b]×[a,b]上的连续、对称的实变函数,假设对所有的 f ∈ L 2 ( [ a , b ] ) f\in L_2([a,b]) fL2([a,b]),都有:
∫ a b ∫ a b k ( t , s ) f ( s ) f ( t ) d s   d t ≥ 0. (1) \int_a^b\int_a^bk(t,s)f(s)f(t)ds\ dt \ge 0. \tag{1} ababk(t,s)f(s)f(t)ds dt0.(1)
K K K 是以核函数 k k k 为基础的积分算子,即:
( K f ) ( t ) = ∫ a b k ( t , s ) f ( s ) d s (2) (Kf)(t)=\int_a^bk(t,s)f(s)ds \tag{2} (Kf)(t)=abk(t,s)f(s)ds(2)
{ ϕ n } , { λ n } \{\phi_n\},\{\lambda_n\} { ϕn},{ λn}是算子 K K K的特征向量和特征函数,那么对 [ a , b ] [a,b] [a,b]上所有的 t t t s s s ,都有:
k ( t , s ) = ∑ j λ j ϕ j ( t ) ϕ j ( s ) . (3) k(t,s)=\sum_j\lambda_j\phi_j(t)\phi_j(s). \tag{3} k(t,s)=jλjϕj(t)ϕj(s).(3)
这个级数在 [ a , b ] × [ a , b ] [a,b]\times[a,b] [a,b]×[a,b]上绝对收敛并且一致收敛。

Mercer’s Theorem的证明

在Mecer的原论文[3]中,这个证明十分复杂。感兴趣的读者可以去看看这篇1908年的数学论文。我没有耐心看完,当时找了很多资料,包括文献[4],他们的证明大概分为两个步骤:

1.证明 ∑ j λ j ϕ j 2 ( s ) \sum_j\lambda_j\phi^2_j(s) jλjϕj2(s)一致收敛至 k ( s , s ) k(s,s) k(s,s)

2.证明 ∑ j λ j ϕ j ( t ) ϕ j ( s ) \sum_j\lambda_j\phi_j(t)\phi_j(s) jλjϕj(t)ϕj(s)一致收敛至 k ( s , t ) k(s,t) k(s,t)

第一个步骤所有资料包括原文都比较简明易懂,复杂的地方主要在第二步,原文花了很长的篇幅、构造了一些中间算子,才证明了它一致收敛,这个过程我看得很吃力,没有完全看懂。而文献[4]只是提了一下用Schwarz不等式就可以证明2,但没有详细说明。

这个坑困扰了我一两周时间,我能查到的所有博客和StackExchange均没有给出令人信服的证明,比如这个Uniform convergence in Mercer Theorem for bounded kernels;它们几乎都是证明到第一步就停了,第二步和我尝试利用Schwarz不等式得到的结论一样:

∑ j ∣ λ j ϕ j ( t ) ϕ j ( s ) ∣ ≤ k ( s , s ) 1 / 2 k ( t , t ) 1 / 2 (4) \sum_j|\lambda_j\phi_j(t)\phi_j(s)|\le k(s,s)^{1/2}k(t,t)^{1/2} \tag{4} jλjϕj(t)ϕj(s)k(s,s)1/2k(t

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值