题目描述:
东东有两个序列A和B。
他想要知道序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
输入:
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
输出:
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
sample:
input:
5 5
1 3 2 5 4
2 4 3 1 5
output:
3 2
题目分析:
实际上动态规划的关键就是找到动态规划的方程,其余的程序实现就比较简单了,对于LIS问题,实际上我们可以把这个问题拆开来看,既然不能一次性求出最大的上升子序列,那么我们可以先求所有的上升序列,然后在所有的上升序列里面求出最大的上升子序列,对于每个上升序列实际上也简单,就是从前往后扫描,如果前面的比后面的小那就是上升序列长度+1,但是你前面有很多可能的上升序列,所以我们每次要取所有上升序列长度最大值。
比如题目中的样例,一开始1就直接算进来长度为1,算到3的时候发现1比3小,所以最小子序列长度+1,此时要比已知的长度大,所以置为2,进入2的时候扫描到1和3的时候同理,2的时候比前面的小,不管,进入5的时候发现1,3,2都比5小,但是1,3,2最长子序列长度是2,所以这应该取3,4进来发现比5小,不作处理。
if(a[j]<a[i])
{
f[i]=max(f[i],f[j]+1);
}
对于LCS问题,处理方法也很简单,如果最后一个一样,那他们就是同样的子序列,如果最后一个不一样,那就去掉每一个的最后一个和另外一个比较,取最大值,之后串的范围不断缩小,到后来就求出了每一个长度下的最大值,那只需要输出他们的字符串长度对应的大小的就可以了。
if(a[i-1]==b[j-1])
{
dp[i][j]=dp[i-1][j-1]+1;
}
else
{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
代码如下:
#include<iostream>
#include<cstring>
using namespace std;
int a[5010],b[5010],f[5010],dp[5010][5010];
int main()
{
int n,m;
cin>>n>>m;
for(int i=0;i<n;i++)
{
cin>>a[i];
f[i]=1;
}
for(int i=0;i<m;i++)
{
cin>>b[i];
}
for(int i=0;i<n;i++)
{
for(int j=0;j<i;j++)
{
if(a[j]<a[i])
{
f[i]=max(f[i],f[j]+1);
}
}
}
int ans1=-114514;
for(int i=0;i<n;i++)
{
ans1=max(ans1,f[i]);
}
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(a[i-1]==b[j-1])
{
dp[i][j]=dp[i-1][j-1]+1;
}
else
{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
}
cout<<ans1<<" "<<dp[n][m];
}