qt本身没有提供将语音转换为文字的功能,但是可以通过调用一些第三方的语音识别API来实现。根据搜索结果,我找到了以下几种方法:
// 创建网络管理对象
QNetworkAccessManager *manager = new QNetworkAccessManager(this);
// 设置请求头
QNetworkRequest request;
request.setUrl(QUrl("http://vop.baidu.com/server_api"));
request.setHeader(QNetworkRequest::ContentTypeHeader,"application/json");
// 设置请求参数
QJsonObject obj;
obj.insert("format","wav");
obj.insert("rate",16000);
obj.insert("channel",1);
obj.insert("cuid","baidu_workshop");
obj.insert("token",token); // token是之前获取的授权码
obj.insert("len",file.size()); // file是要识别的音频文件
obj.insert("speech",base64); // base64是音频文件经过Base64编码后的字符串
QJsonDocument doc(obj);
QByteArray data = doc.toJson();
// 发送POST请求并接收返回数据
QNetworkReply *reply = manager->post(request,data);
connect(reply,&QNetworkReply::finished,[=](){
if(reply->error() == QNetworkReply::NoError){
QByteArray array = reply->readAll();
qDebug() << array;
QJsonDocument doc = QJsonDocument::fromJson(array);
QJsonObject obj = doc.object();
if(obj.value("err_no").toInt() == 0){
QString result = obj.value("result").toArray().at(0).toString();
qDebug() << "result:" << result;
ui->textEdit->setText(result); // 将识别结果显示在文本框中
}
}
else{
qDebug() << "error:" << reply->errorString();
}
});
// 创建云端声音对象
QCloudVoice *voice = new QCloudVoice(this);
// 设置项目信息
voice->setProjectInfo(secretId,secretKey); // secretId和secretKey是之前获取的密钥信息
// 设置回调函数
connect(voice,&QCloudVoice::onResult,this,[=](int code,QVariant result){
if(code == 0){
qDebug() << "result:" << result.toString();
ui->textEdit->setText(result.toString()); // 将识别结果显示在文本框中
}
else{
qDebug() << "error:" << result.toString();
}
});
// 调用SDK方法进行语音识别(以短语音为例)
voice->shortRecognize(file.fileName(),engineModelType); // file是要识别的音频文件,engineModelType是要使用的引擎模型类型(如8k_zh、16k_zh等)
- 使用OpenAI API,它可以提供基于GPT-3.5模型的自然语言处理服务,并且支持多种任务类型,包括语音转文字、文本生成、文本摘要等。你需要先注册一个OpenAI账号,然后申请一个API Key。然后在qt中使用QNetworkAccessManager类来发送HTTP请求,并处理返回的JSON数据。例如:
-
// 创建网络管理对象 QNetworkAccessManager *manager = new QNetworkAccessManager(this); // 设置请求头 QNetworkRequest request; request.setUrl(QUrl("https://api.openai.com/v1/answers")); request.setRawHeader("Authorization","sk-xxxxxxxxxxxxxxxxxxxxxxx"); // sk-xxxxxxxxxxxxxxxxxxxxxxx是之前获取的API Key request.setHeader(QNetworkRequest::ContentTypeHeader,"application/json"); // 设置请求参数 QJsonObject obj; obj.insert("question","What is the text of this speech?"); obj.insert("speech_file","https://example.com/speech.wav"); // speech_file是要识别的音频文件的URL obj.insert("model","gpt-3.5-turbo"); // model是要使用的模型名称(如gpt-3.5-turbo) QJsonDocument doc(obj); QByteArray data = doc.toJson(); // 发送POST请求并接收返回数据 QNetworkReply *reply = manager->post(request,data); connect(reply,&QNetworkReply::finished,[=](){ if(reply->error() == QNetworkReply::NoError){ QByteArray array = reply->readAll(); qDebug() << array; QJsonDocument doc = QJsonDocument::fromJson(array); QJsonObject obj = doc.object(); if(obj.value("object").toString() == "answer"){ QString result = obj.value("answer").toString(); qDebug() << "result:" << result; ui->textEdit->setText(result); // 将识别结果显示在文本框中 } } else{ qDebug() << "error:" << reply->errorString(); } });