Dreamlike Photoreal 2.0大模型

DreamlikePhotoreal2.0是一个基于StableDiffusion1.5的逼真模型,适用于768x768等分辨率的图像处理,也可处理更高分辨率。用户可以从dreamlike.art获取并使用该模型,它可以通过StableDiffusionPipeline在GPU上运行,例如用于创建具有特定场景描述的图片。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dreamlike Photoreal 2.0 is a photorealistic model based on Stable Diffusion 1.5, made by dreamlike.art.  

该模型是在768x768像素的图像上进行训练的,因此请使用768x768像素、640x896像素、896x640像素等分辨率。它也可以很好地处理更高分辨率,如768x1024像素或1024x768像素。

Examples

dreamlike.art

可以随便使用 dreamlike.art! ❗ 🔄

CKPT

Download dreamlike-photoreal-2.0.ckpt (2.13GB) ❗ 🔄

Safetensors

Download dreamlike-photoreal-2.0.safetensors (2.13GB) ❗ 🔄

🧨 Diffusers ❗ 🔄

This model can be used just like any other Stable Diffusion model. For more information, please have a look at the Stable Diffusion Pipeline. ❗ 🔄

from diffusers import StableDiffusionPipeline
import torch

model_id = "dreamlike-art/dreamlike-photoreal-2.0"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")

prompt = "photo, a church in the middle of a field of crops, bright cinematic lighting, gopro, fisheye lens"
image = pipe(prompt).images[0]

image.save("./result.jpg")

### 使用 Stable Diffusion 生成写真风格图像的方法 为了利用 Stable Diffusion 创建逼真的写真风格图像,可以采用特定配置和技术参数来优化输出质量。下面介绍具体方法: #### 配置环境与选择模型 首先,确保安装并配置好 Stable Diffusion 的运行环境。对于追求高真实度的效果而言,建议选用专门针对摄影级画质设计的预训练模型版本,例如 Dreamlike Photoreal 2.0 这样的基于 Stable Diffusion v1.5 开发的真实感模型[^4]。 #### 设置输入提示词 编写精确而详细的文本描述作为引导语句至关重要。这不仅限于简单的人物特征说明,还需加入场景氛围、光线效果以及情感表达等方面的指示,以便让算法更好地理解期望中的视觉呈现方式。 #### 调整采样过程参数 合理设定去噪强度(`denoising strength`)有助于平衡创意自由度与最终成片的真实性。当处理含有较多细节的目标对象时,可适当调高原先默认值至约 0.4 左右的位置[^5];与此同时,在迭代次数方面也应给予充分考量——较高的步数往往能带来更细腻的画面质感。 #### 应用后期修饰技巧 完成初步渲染之后,还可以借助外部工具实施诸如色彩校正、锐化处理等一系列美化操作,使作品更加贴近专业摄影师所拍摄的照片标准。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "dreamlike-art/dreamlike-photoreal-2.0" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = ( "A portrait of a woman with long hair and blue eyes wearing a red dress standing outdoors under sunlight." ) image = pipe(prompt=prompt, denoising_strength=0.4).images[0] image.save("portrait.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

caridle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值