题目链接: 购物
一、题目描述
在遥远的东方,有一家糖果专卖店。
这家糖果店将会在每天出售一些糖果,它每天都会生产出m个糖果,第i天的第j个糖果价格为C[i][j]元。
现在的你想要在接下来的n天去糖果店进行选购,你每天可以买多个糖果,也可以选择不买糖果,但是最多买m个。(因为最多只生产m个)买来糖果以后,你可以选择吃掉糖果或者留着之后再吃。糖果不会过期,你需要保证这n天中每天你都能吃到至少一个糖果。
这家店的老板看你经常去光顾这家店,感到非常生气。(因为他不能好好睡觉了)于是他会额外的要求你支付点钱。具体来说,你在某一天购买了 k 个糖果,那么你在这一天需要额外支付 k2 的费用。
那么问题来了,你最少需要多少钱才能达成自己的目的呢?
二、输入描述:
第一行两个正整数n和m,分别表示天数以及糖果店每天生产的糖果数量。
接下来n行(第2行到第n+1行),每行m个正整数,第x+1行的第y个正整数表示第x天的第y个糖果的费用。
三、输出描述:
输出只有一个正整数,表示你需要支付的最小费用。
示例1:
- 输入
3 2
1 1
100 100
10000 10000 - 输出
107
示例2:
- 输入
5 5
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4 - 输出
10
四、备注:
对于100%的数据,1 ≤ n, m ≤ 300 , 所有输入的数均 ≤ 106。
五、思路
- 很显然的dp问题,因为每天购买的糖果的价钱还要加上k2,同时要保证每一天都有糖果可以吃,所以得到状态转移方程:
dp[i][j] = min(dp[i][j], dp[i-1][k]+dp[i][j-k]+k2) - 最后输出 dp[n][n]
六、Code
#include <bits/stdc++.h>
using namespace std;
#pragma GCC optimize(2)
#define ll long long
const int Max = 5e2+3;
const int mod = 1e9+7;
template<typename T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
ll a[Max][Max], dp[Max][Max];
int n, m, tmp;
bool cmp(ll x, ll y)
{
return x < y;
}
int main()
{
memset(dp, 0x3f3f3f3f, sizeof(dp));
scanf("%d%d", &n, &m);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
scanf("%lld", &a[i][j]);
sort(a[i]+1, a[i]+m+1, cmp);
for(int j=1; j<=m; j++)
a[i][j] += a[i][j-1];
}
dp[0][0] = 0;
for(int i=1; i<=n; i++)
{
tmp = min(n, i*m);
for(int j=i; j<=tmp; j++)
{
for(int k=i-1; k<=j; k++)
dp[i][j] = min(dp[i][j], dp[i-1][k]+a[i][j-k]+(j-k)*(j-k));
}
}
printf("%lld", dp[n][n]);
return 0;
}
蒟蒻一只,欢迎指正