NowCoder 练习 —— 购物 (DP)

题目链接: 购物

一、题目描述

在遥远的东方,有一家糖果专卖店。
这家糖果店将会在每天出售一些糖果,它每天都会生产出m个糖果,第i天的第j个糖果价格为C[i][j]元。
现在的你想要在接下来的n天去糖果店进行选购,你每天可以买多个糖果,也可以选择不买糖果,但是最多买m个。(因为最多只生产m个)买来糖果以后,你可以选择吃掉糖果或者留着之后再吃。糖果不会过期,你需要保证这n天中每天你都能吃到至少一个糖果。
这家店的老板看你经常去光顾这家店,感到非常生气。(因为他不能好好睡觉了)于是他会额外的要求你支付点钱。具体来说,你在某一天购买了 k 个糖果,那么你在这一天需要额外支付 k2 的费用。
那么问题来了,你最少需要多少钱才能达成自己的目的呢?

二、输入描述:

第一行两个正整数n和m,分别表示天数以及糖果店每天生产的糖果数量。
接下来n行(第2行到第n+1行),每行m个正整数,第x+1行的第y个正整数表示第x天的第y个糖果的费用。

三、输出描述:

输出只有一个正整数,表示你需要支付的最小费用。
示例1:

  • 输入
    3 2
    1 1
    100 100
    10000 10000
  • 输出
    107

示例2:

  • 输入
    5 5
    1 2 3 4 5
    2 3 4 5 1
    3 4 5 1 2
    4 5 1 2 3
    5 1 2 3 4
  • 输出
    10

四、备注:

对于100%的数据,1 ≤ n, m ≤ 300 , 所有输入的数均 ≤ 106。

五、思路

  • 很显然的dp问题,因为每天购买的糖果的价钱还要加上k2,同时要保证每一天都有糖果可以吃,所以得到状态转移方程:
    dp[i][j] = min(dp[i][j], dp[i-1][k]+dp[i][j-k]+k2)
  • 最后输出 dp[n][n]

六、Code

#include <bits/stdc++.h>

using namespace std;
#pragma GCC optimize(2)
#define ll long long
const int Max = 5e2+3;
const int mod = 1e9+7;
template<typename T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }

ll a[Max][Max], dp[Max][Max];
int n, m, tmp;

bool cmp(ll x, ll y)
{
	return x < y;
}

int main()
{
	memset(dp, 0x3f3f3f3f, sizeof(dp));
	scanf("%d%d", &n, &m);
	for(int i=1; i<=n; i++)
	{
		for(int j=1; j<=m; j++)
			scanf("%lld", &a[i][j]);
		sort(a[i]+1, a[i]+m+1, cmp);
		for(int j=1; j<=m; j++)
			a[i][j] += a[i][j-1];
	}
	dp[0][0] = 0;
	for(int i=1; i<=n; i++)
	{
		tmp = min(n, i*m);
		for(int j=i; j<=tmp; j++)
		{
			for(int k=i-1; k<=j; k++)
				dp[i][j] = min(dp[i][j], dp[i-1][k]+a[i][j-k]+(j-k)*(j-k));
		}
	}
	printf("%lld", dp[n][n]);
	return 0;
}

蒟蒻一只,欢迎指正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值