源码分享,采用线程池,实现高性能跨平台C++多线程并行库,附测试!

由于实用需要,实现一个跨平台的多线程并行库,摆脱windows的ppl,并且兼顾效率和跨平台性,特点如下:

  • 采用C++11跨平台,调度性能和windows ppl库相近;
  • 使用了其他大神的 线程池代码,实现线程高效复用;
  • 支持STL容器、C数组、指针多种方式传递容器目标对象做并行;
  • 代码可自行完善功能;

先看测试结果:
在这里插入图片描述

  • 测试所用的执行函数体执行时间极端{ i += 1;},目的是,测试比较多线程的调度性能;
  • 由于数据量不大,主执行过程短,且windows平台VC编译器对串行有优化,所有串行的速度还是很快(不过没有可比性);
  • 对于连续空间排列容器(数组、vector)代码执行效率比windows PPL库略慢一些,不过调度效率尚可;
  • 对于非连续空间容器(本例采用unordered_map)代码执行效率比windows PPL库快一些;
  • 综合来说,若兼顾性能和考虑跨平台,代码效率还算是达标的。

下面是并发执行效果:(指定并发30个任务,实现了并行)
在这里插入图片描述
(指定cpu硬件核心线程数个并发任务,也实现了并行)在这里插入图片描述
并行过程cpu出现极高峰值段(并行实现)
在这里插入图片描述

测试代码:

int main(){
   
	std::mutex cs;
	const int sii = 50000;
	const int cycle = 5000;
	int con[sii] = {
    2 };
	vector<int> con2(sii, 2);
	unordered_map<int, int> con3;
	map<int, int> con4;
	for (int i = 0; i < sii; ++i)con3[i] = 2, con4[i] = 2;
	auto incre = [&](int& i) {
   i += 1; };

	auto ttt0 = clock();
	for (size_t i = 0; i < cycle; i++)
		for (size_t j = 0; j < sii; j++)
			incre(con[j]);
	auto ttt1 = (clock() - ttt0) / double(CLOCKS_PER_SEC); ttt0 = clock();
	for (size_t i = 0; i < cycle; i++)
		parallel(&con[0],0, sii, incre); //传首指针
	auto ttt2 = (clock() - ttt0) / double(CLOCKS_PER_SEC);
	ttt0 = clock();
	for (size_t i = 0; i < cycle; i++)
		parallel_iter(con2.begin(), con2.end(), incre);
	auto ttt3 = (clock() - ttt0) / double(CLOCKS_PER_SEC); ttt0 = clock();
	for (size_t i = 0; i < cycle; i++)
		concurrency::parallel_for_each(con2.begin(), con2.end(), incre);
	auto ttt6 = (clock() - ttt0) / double(CLOCKS_PER_SEC); ttt0 = clock();
	for (size_t i = 0; i < cycle; i++)
		parallel_iter(con3.begin(), con3.end(), [](pair<const int, int>& i) {
   i.second += 1; });
	auto ttt4 = (clock() - ttt0) / double(CLOCKS_PER_SEC); ttt0 = clock();
	for (size_t i = 0; i < cycle; i++)
		concurrency::parallel_for_each(con3.begin(), con3.end(), [](pair<const int, int>& i) {
   i.second += 1; });
	auto ttt5 = (clock() - ttt0) / double(CLOCKS_PER_SEC); ttt0 = clock();
	for (size_t i = 0; i < cycle; i++)
		parallel_iter(con4.begin(), con4.end(), [](pair<const int, int>& i) {
   i.second += 1; });
	auto ttt7 = (clock() - ttt0) / double(CLOCKS_PER_SEC); ttt0 = clock();
	for (size_t i = 0; i < cycle; i++)
		concurrency::parallel_for_each(con4.begin(), con4.end(), [](pair<const int, int>& i) {
   i.second += 1; });
	auto ttt8 = (clock() - ttt0) / double(CLOCKS_PER_SEC); ttt0 = clock();
	cout << "\n[ 数据量 " << sii << " ][ 循环次数 " << cycle << " ] -> 执行时间统计 ---------------"
		<< endl << "串行                   : " << ttt1 << " 秒"
		<< endl << "数组                   : " << ttt2 << " 秒"
		<< endl << "vector                 : " << ttt3 << " 秒"
		<< endl << "vector       (Win PPL) : " << ttt6 << " 秒"
		<< endl << "unordered_map          : " << ttt4 << " 秒"
		<< endl << "unordered_map(Win PPL) : " << ttt5 << " 秒"
		<< endl << "map                    : " << ttt7 << " 秒"
		<< endl << "map          (Win PPL) : " << ttt8 << " 秒";

	size_t tCounts2 = 30;
	
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值