【每日一读】EMNLP2020:面向多跳问答的分层图网络

这是一篇关于多跳问答(multi-hop QA)任务的论文,不同于单跳QA,multi-hop QA任务下问题的答案需要对多个段落或篇章进行多跳推理。
在这里插入图片描述

然而,现有的相关工作仍旧存在一些挑战与困难需要被进一步研究:

  • 现有工作会使用类似信息检索的思想来查找问题相关的段落,然后用MRC任务中类似的方法来找到问题的答案,但存在的问题是:怎么将散落在不同语义粒度(段落、句子、实体)的信息聚合起来,用于进行答案和支撑事实发现的联合预测。

  • 为了更好地利用文中用于answer发现的evidence, 一些工作通过构建实体级别的图结构来进行推理;然而,基于实体图的方法能够用于预测问题的答案,却不能用于支撑事实的发现

基于以上问题,作者设计了**Hierarchical Graph Network (HGN)**来进行multi-hop QA 任务,较之以往工作,它有以下三个特点:

  • 具有四种类型的节点,分别是问题节点段落节点句子节点实体节点 ,不同类型的节点可分别用于multi-hop QA下的不同步骤下的子任务中;
  • 引入预训练语言模型来学习文本的上下文表示,并得到节点的初始化表示,再通过图网络进一步更新节点表示;
  • 由于问题的答案不一定是一个实体,因此在答案预测时引入 span prediction 来发现非实体的问题答案。

具体地,HGN模型由如下部分构成:
在这里插入图片描述

  • Graph Construction Module: 分层图构建模块,包括三个步骤: 通过title matching 选择与问题相关的段落发现段落中能够提供指向其他段落证据的实体、句子,基于以上两边得到了图中所需的节点,再根据规则在节点之间添加上连边

  • Context Encoding Module: 使用Roberta和BiLSTM对文本进行编码,得到问题节点、段落节点、句子节点的初始表示。

  • Graph Reasoning Module: 使用图注意力机制在节点之间进行信息传递,更新节点的表示。

  • Multi-task Prediction Module:分步进行如下三个子任务: 基于段落节点的段落选择、基于句子节点的支撑事实预测、以及基于实体节点答案预测 以及基于上下文表示和span prediction的非entity答案预测

作者使用HGN模型在HotpotQA 数据集上进行实验,在两种任务设置下,都在Answer Prediction与Support Fact Prediction的联合任务上都取得了sota效果。

在这里插入图片描述
在这里插入图片描述

最后,作者又进行了一系列的分析,包括误差分析、消融实验、不同预训练模型对实验结果的影响以及HGN在不同推理类型下的性能。

在这里插入图片描述
在这里插入图片描述

了解更多深度学习相关知识与信息,请关注公众号深度学习的知识小屋

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值