证明复杂度与克内泽尔 - 洛瓦斯定理
1. 预备知识
在逻辑推理和证明的领域中,我们常常会用到一些特定的函数和公式。对于布尔变量 (X_1, \cdots, X_n, Y_1, \cdots, Y_m)(其中 (n \leq m)),函数 (Count) 在组合数学方面有一些简单的性质。在LK(一种逻辑系统)中,可以给出以下事实的多项式大小证明:
1. (X_1 \land X_2 \land \cdots \land X_n \vdash Count_n(X_1, X_2, \cdots, X_n) = n)
2. (\vdash Count_{\binom{n}{2}}(X_1 \land X_2, \cdots, X_i \land X_j, \cdots, X_{n - 1} \land X_n) = \lfloor\frac{Count_n(X_1, X_2, \cdots, X_n)}{2}\rfloor)
3. (\vdash Count_{n^2}((X_i \land {i \neq j}) {i,j = 1}^n) = Count_n(X_1, X_2, \cdots, X_n) \cdot (n - 1))
4. ((X_1 \leq Y_1), \cdots, (X_n \leq Y_n) \vdash (Count_n((X_i) {i = 1}^n) \leq Count_m((Y_j)_{j = 1}^m))
这里,公式中的变量替换指的是将每个变量用其他变量替换(不一定是一一对应的方式)。
2. 克内泽尔 - 洛瓦斯定理的命题表述
对于每个基数为 (k) 的集合 (
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



