20、证明复杂度与克内泽尔 - 洛瓦斯定理

证明复杂度与克内泽尔 - 洛瓦斯定理

1. 预备知识

在逻辑推理和证明的领域中,我们常常会用到一些特定的函数和公式。对于布尔变量 (X_1, \cdots, X_n, Y_1, \cdots, Y_m)(其中 (n \leq m)),函数 (Count) 在组合数学方面有一些简单的性质。在LK(一种逻辑系统)中,可以给出以下事实的多项式大小证明:
1. (X_1 \land X_2 \land \cdots \land X_n \vdash Count_n(X_1, X_2, \cdots, X_n) = n)
2. (\vdash Count_{\binom{n}{2}}(X_1 \land X_2, \cdots, X_i \land X_j, \cdots, X_{n - 1} \land X_n) = \lfloor\frac{Count_n(X_1, X_2, \cdots, X_n)}{2}\rfloor)
3. (\vdash Count_{n^2}((X_i \land {i \neq j}) {i,j = 1}^n) = Count_n(X_1, X_2, \cdots, X_n) \cdot (n - 1))
4. ((X_1 \leq Y_1), \cdots, (X_n \leq Y_n) \vdash (Count_n((X_i)
{i = 1}^n) \leq Count_m((Y_j)_{j = 1}^m))

这里,公式中的变量替换指的是将每个变量用其他变量替换(不一定是一一对应的方式)。

2. 克内泽尔 - 洛瓦斯定理的命题表述

对于每个基数为 (k) 的集合 (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值