高斯——拉盖尔积分法和高斯——勒让德积分法求积分

本文介绍了高斯积分法在数值积分中的重要性,特别是高斯-拉盖尔和高斯-勒让德公式。高斯-拉盖尔法则适用于指数衰减函数的积分,而高斯-勒让德公式通过利用勒让德多项式的零点进行求积。文中还展示了不同阶数的高斯-勒让德公式的示例,并提供了相关代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.介绍
微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,称为不定积分9。相对而言,另一种就是定积分了,之所以称其为定积分,是因为它积分后得出的值是确定的,是- -个数,而不是-一个函数。计算定积分的方法很多,而高斯一勒让德公式就是其中之一。

高斯积分法是精度最高的插值型数值积分,具有阶精度,并且高斯积分总是稳定。而高斯求积系数,可以由Lagrange 多项式Q插值系数进行积分得到。

高斯-勒让德求积公式是构造高精度差值积分的最好方法之一。他是通过让节点和积分系数待定让函数以此取次多项式使其尽可能多的能够精确成立来求出积分节点和积分系数。高斯积分的代数精度是,而且是最高的。通常运用的是的积分节点和积分系数,其他积分域是通过一定的变换变换到-1到1之间积分。

2.高斯-勒让德求积公式
在区间上,高斯-勒让德求积公式为

∫f(x)dx≈∑Akf(xk),上限为1,下限的-1,连加从0到x

我们知道勒让德多项式Pn+1(x)的零点就是求积公式的高斯点,形如上式的高斯公式特别的称为高斯-勒让德公式。

若取P1(x)=x的零点xo=0做节点构造求积公式.

∫f(x)dx≈Aof(0),上限为1,下限的-1

令它对f(x)=1准确成立,即可定出

A0=2。这样构造出的一点高斯勒让德求积公式是中矩形公式,再取

P2(x)=言(3x*2-1)的两个零点土方构造求积公式

∫f(x)dx≈Aof(1/(-√3

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值