人群密度估计最新数据集NWPU-Crowd & 最新研究进展

本文介绍了人群密度估计的新数据集NWPU-Crowd,它是目前最大的人群计数数据集,包含多种复杂场景,提供公平的评估平台。文章还讨论了现有模型的挑战,如噪声抗性、类别间影响和极高密度估计,并介绍了C3F,一个基于Pytorch的开源人群计数框架,旨在促进该领域的研究。
摘要由CSDN通过智能技术生成

人群密度估计-NWPU-Crowd数据集

该数据集是由Qi Wang等人于2020年1月10日公开,论文题为:NWPU-Crowd: A Large-Scale Benchmark for Crowd Counting.

数据集开源链接: http://www.crowdbenchmark.com/

论文开源代码链接:https://github.com/gjy3035/NWPU-Crowd-Sample-Code

以往数据存在的问题

1. 数据集不足。基于CNN的方法都是需要庞大的数据集做支撑的,由于现存的人群密度数据集规模太小,基于深度学习的方法很难避免过拟合;

2. 没有一个相对公正的评价标准。像其他领域,KITTI,CityScapes和Microsoft COCO,允许研究人员提交测试集的结果进行公正的评价。所以一个公正的评价平台对于该领域的发展至关重要。

NWPU-Crowd数据集的优势

1. 目前为止在人群密度估计方面最大的数据集,拥有5109张图片和2133238个标注实体;

2. 内含一些负样本,比如极高密度的人群,这样可以提高训练模型的鲁棒性;

3. 图片的分辨率相比其他数据集更高;

4. 且单张图片的标注实体数量范围非常大,区间是[0,20033];

5. 提供了一个公平的平台网站,供研究人员提交测试集的计算结果,然后计算出MSE/MAE。

NWPU-Crowd与其他数据集的详细对比

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值