Cousera - Deep Learning - 课程笔记 - Week 9

2018年9月版本

Week 9

错误分析 Error Analysis

  • 手动检查算法中的错误,来明确问题的根本并据此设计下一步的改进计划
  • 分析方法:获得一组错标样本,作为FN和FP来看待,计算不同类别的错标数,并尝试从中得到新的错标类别,以评估优化的优先级以及下一步的具体策略
  • 性能上限(Perform Ceiling):尝试解决某一问题能够得到的最大性能提升
  • 平行地评估多个思路:通过同时评估,得出不同的思路所能带来的性能优化(准确率可以提升的百分比),选择能够带来最大改进的意向作为下一步的优化思路
  • 错误标签样例:在数据集中,某一样例的标签实际上是错误的(ground truth是错的)
  • 对训练集,如果出现了随机错误样例(被标错的样本是随机出现的),深度学习算法对这类错误有很大的鲁棒性,因此没有比较对其中的错误标签进行处理
  • 但是,学习算法对系统误差没有足够的鲁棒性(被恶意地标了很多错误数据)
  • 对开发集和测试集,在错误分析时,加入一个“错误标签”类别进行分析。根据错误分析的结果决定是否对错误标签进行处理
  • 清理开发集和测试集中的错误标签:
    • 对两个数据集采用同样的处理步骤,确保他们仍然服从相同的分布
    • 既检查被分错的样例,也检查被“分对”的样例
    • 训练集和开发/测试集数据可能有轻微的分布的不同
  • 构建系统实践:
    • 快速简历开发集/测试集以及相应的度量指标,这样能够尽快确定目标
    • 快速建立一个初步的系统
    • 使用偏差/方差分析以及错误分析以区分后续几步工作的优先级
  • 快速建立一个系统,并不断迭代

错配的训练集与开发/测试集 Mismatched Training & Dev/Test Set

  • 通常情况下,往往会出现训练集和测试集的数据分布不一致的情况

  • 假设目标数据集占整个数据集的很小一部分,随机混合并不明知,因为开发集中会有绝大多数的非目标数据,使得评估性能时无法命中目标

  • 正确思路:开发集和测试集都是目标数据,训练集对目标数据可有可无(这样会出现训练集与开发集分布不一致的问题)

  • 不一定要使用所有的数据

  • 如果训练集误差和开发集误差相差过大,且存在数据分布不一致的问题,单纯认为方差过大往往并不明智。此时存在两个变量,其一是算法看到的数据只有训练集而没有开发集,其二是数据分布不同,令人很难判定究竟导致误差相差过大的原因

  • 上述问题的解决方法:创建一个新的数据集“训练-开发集(Train-Dev Set)”,具有和训练集相同的分布,但是并不用于训练。

    • 对训练集,随机混淆,取其中一小块作为训练-开发集
    • 训练-开发集和训练集数据分布相同
    • 使用其余的训练集部分对模型进行训练,训练-开发集、开发集以及测试集用于网络调优
    • 如果训练集误差较小,训练-开发集误差和开发集误差基本相同,那么这个模型存在高方差的问题
    • 如果训练集和训练-开发集误差都比较小,但是在开发集出现了误差跃升,那么问题就是数据错配
    • 类似地,如果三个误差基本相同但都与最优误差(人类误差)相差过大,那么是高偏差问题
    • 如果三者都很大,同时开发集误差明显大于前二者,那么这个模型即存在高偏差问题,同时又存在数据错配的问题
  • 性能的评定与误差的关系

    • 训练集误差与人类水平误差的差距:可避免偏差
    • 训练-开发集误差与训练集误差的差距:方差
    • 训练-开发集误差与开发集误差的差距:数据错配
    • 测试集误差与开发集误差的差距:开发集过拟合
  • 上面的几类误差往往是按顺序不严格增长的,但是有可能会出现在训练数据上(训练集,训练-开发集)的误差表现要差于在测试数据上(开发集,测试集)的表现(后者更容易学习)

  • 对于误差的差距的发现,有这样一个分析方法

    错误类型高质量的数据不同质量的目标数据
    人类级别“人类级别误差”人类水平在目标数据上的表现
    用于训练的样例错误“训练集误差”取目标数据用于训练的情境下的表现
    为用于训练的样例错误“训练-开发集误差”“开发/测试集误差”
  • 解决数据错配的办法:

    • 进行手动的错误分析,尝试去理解训练集与开发/测试集之间的差异
    • 设法使训练数据更加相似与开发集,或者收集更多和开发集相似的数据
    • 使数据更加相似的方法
      • 人工数据合成(警惕模型对合成成分的过拟合)

迁移学习 Transfer Learning

  • 迁移学习:将一个任务学习到的一部分知识应用于另外一个任务之中
  • 一种方式是,对于一个已经训练好的网络,去掉最后一层,并随机初始化一个新的最后一层进行另外一个任务的训练
  • 对于新的网络,可以选择之训练最后一层(数据较少)或者选择重新训练所有的权重(数据较多)
  • 对于重新训练的方式,初始阶段的参数配置称为预训练(pre-training),重新调整的过程称为微调(fine tuning)
  • 迁移学习用意义的场景:被迁移的模型拥有大量的训练数据,而迁移到的模型仅有一小部分数据
  • 迁移学习不好用的场景:被迁移的模型训练数据很少,而迁移到的模型却有很多的训练数据
  • 如果从模型A迁移一定的知识到模型B,就需要
    • 两个任务应当由相同的输入X
    • 任务A有着更多的数据
    • A中的低层次特征能够帮助B达到学习目标

多任务学习 Multi-task Learning

  • 迁移学习中,任务A和B有着明确的先后顺序。在多任务学习中,多个任务同时进行,一个网络同时做几件事,每个任务都会帮助其他任务
  • 损失函数应该是对每一个分量的逻辑损失加和,即 1 m ∑ i = 1 m ∑ j = 1 n L ( y ^ j ( i ) , y j ( i ) ) \frac1m\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}L(\hat y_j^{(i)},y_j^{(i)}) m1i=1mj=1nL(y^j(i),yj(i))
  • 不同于softmax回归,每一个样本都有多个标签
  • 即使某些样本的某些分量没有标注,多任务学习算法仍然能正常工作
  • 多任务学习的应用场景
    • 训练一组可以在低级特征层面上共享的任务
    • 每个单项任务的数据量非常相似(其他全部任务可以对一个任务的学习起到增强作用)
    • 能够训练一个足够大的神经网络使其在所有任务上都表现很好(不够大的网络用于多任务训练往往会影响准确率)

端到端深度学习 End-to-End Deep Learning

  • 端到端:将多个阶段的学习系统的各个阶段进行捕获,并将其替代为单个神经网络,运行速度更快
  • 有输入直接到输出(没有中间阶段),学习直接的映射
  • 挑战:需要大量的数据才能取得很好的结果
  • 端到端系统需要大量直接映射的数据进行训练
  • 优点:
    • 让数据发挥主导作用(避免人的先见产生阻碍作用)
    • 需要更少的人工设计的组件(简化流程)
  • 缺点:
    • 需要大量的直接映射的数据
    • 排除了一些具有潜在用途的手工设计的组件
  • 关键问题:是否具有足够多的数据,以学习一个拥有足够将X映射到Y的复杂度的函数
  • 数据的可用性决定了应当对哪一个阶段使用深度学习模型(整个或者部分)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值