Coursera - 机器学习基石 - 课程笔记 - Week 4

Feasibility of Learning

Learning is Impossible

  • 由于真实的模式 f f f是未知的,我们很难最终确定 g g g是否真的很拟合,甚至可能永远得不到“正确的”答案(控制因素太多)
  • 学习的目的是预测既有数据集以外的内容,如果任何一种可能的假设都能够你和数据集以外的结果,那么相当于“没有学到东西”

Probability to the Rescue

  • 对于推断在数据集之外的未知目标 f f f,是非常困难的
  • 一种可行思路:样本抽取估计(罐子里拿弹珠模型)
  • 对于实际比率 μ \mu μ和样本结果比例 ν \nu ν
    • 在取足够大的样本量 N N N时,二者相差很小: P [ ∣ ν − μ ∣ > ϵ ] ≤ 2 exp ⁡ ( − 2 ϵ 2 N ) \mathbb{P} [|\nu - \mu| \gt \epsilon] \le 2 \exp(-2\epsilon^2N) P[νμ>ϵ]2exp(2ϵ2N)(Hoffding不等式)
    • 二者可能(大概率)近似(存在一个ε)相等(probably approximately correct, PAC)
    • 对任意的 N N N ϵ \epsilon ϵ是有效的
    • 因为右侧结果无 μ \mu μ,因此不需要知道真实比例(以及概率)
    • 如果样本量足够大,我们可以大概率认为可以由 ν \nu ν推论到 μ \mu μ

Connection to Learning

  • 类比于从罐子里面拿弹珠
  • 对于一个数据集合(对样本空间的抽样) D \mathcal D D,如果样本空间够大,且每一个样本都是独立同分布的,那么我们可以通过在样本集合上的 h h h之表现 [ h ( x n ) ≠ y n ] [h(\bold x_n) \ne y_n] [h(xn)=yn]估计 h h h在整个样本空间的表现,即与 f f f的差距 [ h ( x ) ≠ f ( x ) ] [h(\bold x) \ne f(\bold x)] [h(x)=f(x)]
  • 估计假设的效果,对固定的假设 h h h,在数据足够大时, E i n − s a m p l e ( h ) ≈ E o u t − o f − s a m p l e ( h ) E_{in-sample}(h) \approx E_{out-of-sample}(h) Einsample(h)Eoutofsample(h)

Connection to Learning

  • 根据Hoffding不等式,坏样本,当前假设下 E i n E_{in} Ein E o u t E_{out} Eout相差很远,且面临多个选择时,会恶化这种情形
  • 坏的数据样本集
    • 对于选择 g g g会产生不好的影响
    • 可能存在 E i n E_{in} Ein E o u t E_{out} Eout相差甚远的情形
  • 根据Hoffding不等式,如果有 M M M个假设可供选择,那么从样本空间中遇到坏数据的概率上界为 2 M exp ⁡ ( − 2 ϵ 2 N ) 2M\exp(-2\epsilon^2N) 2Mexp(2ϵ2N)
    • 只要选择有限,对任意的 M M M N N N ϵ \epsilon ϵ都有效
    • 我们控制 M M M有限, N N N足够大,可以保证PAC(可以选择一个 E i n E_{in} Ein较小的假设作为最终结果 g g g
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值