UCAS - AI学院 - 知识图谱专项课 - 第11讲 - 课程笔记

知识推理

概述

  • 推理能力:对知识的内部表示进行操作的过程——通过已知知识推断出未知知识的过程
  • 推理:是由一个或几个已知的判断(前提)推出新判断(结论)的过程
  • 归纳 vs. 演绎
    • 归纳推理:从特殊到一般的过程,从大量事实推出该类事物的一般性结论
    • 演绎推理:从一般到特殊的过程,从一般性结论出发,得到具体陈述或个体结论的过程——三段论(大前提、小前提、结论) / 利用每一个证据,逐步推导出目标或以外的结论
    • 二者的区别:后者力求在一般性前提下,得到个体结论的正确性,没有产生新的知识;前者则产生了没有的新知识
  • 确定性 vs. 不确定性
    • 确定性推理:确定性逻辑推理,完备的推理过程和充分的表达能力,严格按照预先定义的规则准确推导出结论——现实世界很难实现(存在不确定、不正确的知识)
    • 不确定性推理:概率推理,构建概率模型,对推理假设进行验证,存在一定置信度的正确性证明
  • 逻辑 vs. 非逻辑
    • 逻辑推理:包含严格约束的推理过程
    • 非逻辑推理:过程相对模糊
  • 符号 vs. 数值
    • 符号推理:直接在知识图谱中的实体和关系符号上进行直接推理(确定性、不确定性)
    • 数值推理:使用数值计算实现推理(分布式表示推理)
  • 任务需求
    • 知识库补全:链接预测
    • 知识库问答:对自然问句的解析,从知识库中寻找答案

归纳推理:学习推理规则

  • 基于规则的推理:精准 + 可解释
    • 规则学习:自动化规则获取
    • 一阶谓词逻辑规则
      • 谓词、个体变量
      • 逻辑蕴含、存在量词、全称量词
      • 规则体(前提)、规则头(结论)、规则实例

规则逻辑程序设计 ILP

  • ILP:使用一阶谓词逻辑来进行知识表示、通过修改和扩充逻辑表达式完成对数据的规则

    • 给定:目标谓词 P P P P P P的正例集合系和反例集合、背景知识
    • 目标:找到定义 P P P的规则,使其覆盖所有的正例,同时不覆盖所有负例
  • FOIL算法

    • First Order Inductive Learner
    • 序贯覆盖实现规则的学习
    • 算法过程:
      1. 从空规 P ← ? P \gets ? P?开始,将目标谓词作为规则头
      2. 逐一将其他谓词加入规则体进行考察,按预定标准评估规则的优劣并选取最优规则
      3. 将该规则覆盖的训练样例去除,以剩下的样例组成训练集重复上述过程
    • 从一般到特殊:逐步向规则添加约束,不断覆盖所有正例,并不覆盖所有负例
    • 规则评估
      • F O I L _ G A I N = M ^ + ( log ⁡ 2 m ^ + m ^ + + m ^ − − log ⁡ 2 m + m + + m − ) FOIL\_GAIN = \hat M_+ \left( \log_2 \frac {\hat m_+}{\hat m_+ + \hat m_-} - \log_2 \frac {m_+}{m_+ + m_-} \right) FOIL_GAIN=M^+(log2m^++m^m^+log2m++mm+)
      • M ^ + / M ^ − \hat M_+ / \hat M_- M^+/M^:增加候选文字后新规则覆盖的正、反例个数
      • M + / M − M_+ / M_- M+/M:原规则所覆盖的正、反例个数
      • 该增益仅考虑正例的信息增益,并以新规则覆盖的正例数为权重
  • 传统ILP vs. 知识图谱

    • ILP
      • 谓词可以多元
      • 需要目标谓词的正例与反例
      • 封闭世界假设(未声明正例即反例)
    • 知识图谱
      • 谓词通常二元
      • 一般不显式表示谓词的反例
      • 开放世界假设(未声明,可认为未知类别)

关联规则挖掘

  • 规则:包含规则主题和规则头两个部分
    • R U L E : B O D Y → H E A D RULE:BODY \to HEAD RULE:BODYHEAD
    • 规则头都是二元原子,规则体由任意多个一元或二元原子组成(合取)
    • 一般规则:规则体包含肯定部分和否定部分
    • 霍恩规则:规则体只包含肯定部分
    • 路径规则:KaTeX parse error: Undefined control sequence: \and at position 15: r_1(e_1, e_2) \̲a̲n̲d̲ ̲r_2(e_2, e_3) \…
  • 规则学习评估
    • 规则实例化:变量替换成实体后的结果
    • 支持度 support ⁡ ( r u l e ) \operatorname{support}(rule) support(rule):同时满足规则主体和规则头的实例个数
    • 置信度 confidence ⁡ ( r u l e ) \operatorname{confidence}(rule) confidence(rule) confidence ⁡ ( r u l e ) = support ⁡ ( r u l e ) # body ⁡ ( r u l e ) \operatorname{confidence}(rule) = \frac {\operatorname{support}(rule)}{\#\operatorname{body}(rule)} confidence(rule)=#body(rule)support(rule)
    • 规则头置信度(head confidence): head_confidence ⁡ ( r u l e ) = support ⁡ ( r u l e ) # head ⁡ ( r u l e ) \operatorname{head\_confidence}(rule) = \frac {\operatorname{support}(rule)}{\#\operatorname{head}(rule)} head_confidence(rule)=#head(rule)support(rule)
  • AMIE:不完备知识库中的关联规则挖掘
    • AMIE挖掘闭式规则
      • 两个谓词共享一个变量或实体,则连通
      • 两个为此通过连通关系传递性相连,则连通
      • 规则连通且其中变量至少出现两次,则为闭式规则
    • AMIE依次学习每种关系的规则
      • 从空规则开始,通过三种操作扩展规则体,保留支持度大于阈值的候选闭式规则
      • 添加悬挂边:悬挂边的一端为未出现过的变量
      • 添加实例边:实例边的一端为未出现过的常量
      • 添加闭合边:闭合边是连接两个存在于规则中的元素的边
    • AMIE规则评估
      • 支持度:同时符合规则体和规则头的实例数目
      • 置信度:支持度除以仅符合规则体的实例数目
      • 基于封闭世界假设
    • 部分完整性假设
      • 强于开发世界假设
      • 在知识库中,若存在某个实体 x x x的关系 r r r属性,则知识库中包含了 x x x的所有关系 r r r属性(否则对于 r r r x x x是否包含之是未知的)
    • 基于部分完整性假设的规则评估
      • PCA置信度:在支持度的计算中,分布只考虑 r ( x , y ′ ) r(x, y^\prime) r(x,y)这种与 x x x存在 r r r关系的包含指定 y y y以外的实例,不考虑只包含 r ( x , y ) r(x, y) r(x,y)的实例

路径排序算法

  • 规则与图谱中的关系路径存在对应关系
  • PRA以路径作为特征,学习目标关系的分类器
  • score ⁡ ( s , t ) = ∑ π j ∈ P l θ j P ( s → t , ; π j ) \operatorname{score}(s, t) = \sum_{\pi_j \in P_l} \theta_j P(s \to t, ; \pi_j) score(s,t)=πjPlθjP(st,;πj)
  • 工作流程
    • 特征抽取:生成并选择路径特征集合(随机游走、BFS、DFS)
    • 特征计算:计算每个训练样例的特征值(随机游走概率、出现频次)
    • 分类器训练:根据训练样例,为每个目标关系训练一个分类器(单任务学习、多任务学习)
  • PRA规则学习:根据分类器权重自动挖掘并筛选可靠规则

演绎推理:推理具体事实

  • 基于规则的直接推理
    • 通常需要在已知事实上反复迭代使用规则,开销大、效率低
    • 只能进行确定性推理,无法完成不确定性推理

马尔科夫逻辑网

  • 马尔可夫逻辑网:概率图 + 一阶谓词逻辑
    • 统计关系学习模型
    • 核心思想:为规则绑定权重,将一阶谓词逻辑中的硬性约束软化
    • 规则通常是真的,但不总是真的——违反规则——存在的可能性降低——违例越少,存在可能性越大——权重
    • 权重:约束强度,无穷大权重即硬性规则
  • 形式化定义:P61-62
    • P ( X = x ) = 1 Z exp ⁡ ( ∑ f i ∈ F w i n i ( x ) ) P(X = x) = \frac 1Z \exp \left(\sum_{f_i \in \mathcal F} w_i n_i(x)\right) P(X=x)=Z1exp(fiFwini(x))
    • n i ( x ) n_i(x) ni(x)表示当前世界 x x x中规则 f i f_i fi的所有实例化中为真的数目
  • 对应图结构
    • 每个原子事实对应图中的一个节点
    • 两个节点所表示的原子事实出现在同一个实例化规则之中,存在一条边
    • 所有出现在同一实例化规则中的原子事实组成了一个团
  • 问题
    • 规则及权重已知: 推断知识图谱中任意未知事实成立的概率(推断问题)
    • 规则已知权重未知: 自动学习每条规则的权重(参数学习)
    • 规则及权重未知: 自动学习规则及其权重(结构学习)——归纳推理!

概率软逻辑

  • 概率软逻辑
    • 对马尔可夫逻辑网的进一步延伸
    • 允许原子事实的真值可以在连续空间 [ 0 , 1 ] [0, 1] [0,1]内取任意值
  • 一阶谓词逻辑的松弛建模
    • KaTeX parse error: Undefined control sequence: \and at position 5: l_1 \̲a̲n̲d̲ ̲l_2 = \max \{0,…
    • KaTeX parse error: Undefined control sequence: \or at position 5: l_1 \̲o̲r̲ ̲l_2 = \max \{I(…
    • ¬ l 1 = 1 − I ( l 1 ) \neg l_1 = 1 - I(l_1) ¬l1=1I(l1)
    • 蕴含式 r b o d y → r h e a d r_{body} \to r_{head} rbodyrhead成立当且仅当 I ( r b o d y ) ≤ I ( r h e a d ) I(r_{body}) \le I(r_{head}) I(rbody)I(rhead)
  • 概率分布
    • f ( I ) = 1 Z exp ⁡ ( ∑ r ∈ R λ r ( d r ( I ) ) p ) f(I) = \frac 1Z \exp \left(\sum_{r \in \mathcal R} \lambda_r (d_r(I))^p \right) f(I)=Z1exp(rRλr(dr(I))p)
    • λ r \lambda_r λr为权重
    • d r ( I ) d_r(I) dr(I)为真值
    • p p p为1或者2两种损失函数
  • 问题
    • 规则及权重已知: 推断知识图谱中任意未知事实成立的概率(推断问题)
    • 规则已知权重未知: 自动学习每条规则的权重(参数学习)
    • 规则及权重未知: 自动学习规则及其权重(结构学习)——归纳推理!
  • 应用:事件识别
    • 解决方法:同时考虑多层次信息对触发词进行消歧
    • 深层局部信息:细粒度实体类型
    • 全局信息:事件之间的相关性
    • 全局模块:
      • 联合局部模型的初步分类信息和全局信息进行全局推理
      • 概率软逻辑模型
      • 句子级:在相同句子中共现的概率
      • 文档级:在相同文档中共现的概率
      • 主题级:主题和事件的相关性
  • 前沿:面向自然语言的软推理机——使用自然语言模仿三段论推理

基于分布式表示的推理

  • 人的推理模式
    • 考虑尽可能多的因素,全局推理——线索越多越能得到正确结论
    • 利用潜在的推理模式——隐式规律
  • 数值推理的优势
    • 捕捉实体和关系之间的隐式关联
    • 分布式空间映射对特征间的复杂关系进行了解耦,减少了维数灾难问
    • 使符号数据可以直接参与运算且计算速度非常快
  • 分布式知识表示
    • 将符号化的实体和关系在低维连续向量空间表示,简化计算,最大限度保留原始图结构
    • 实体关系表示(定义实体和关系的表示)——打分函数定义(三元组成立可能性)——表示学习(优化问题)
    • 任务:链接预测、元组分类、实体解析
  • 表示方法分类
    • 位移距离模型:基于距离的打分函数衡量三元组成立可能性
      • TransE
        • 位移假设 h + r = t \bold h + \bold r = \bold t h+r=t
        • 打分函数 f ( h , r , t ) = ∥ h + r = t ∥ 1 / 2 f(h, r, t) = \|\bold h + \bold r = \bold t\|_{1 / 2} f(h,r,t)=h+r=t1/2
        • Cons:不能很好建模自反型、多对一、一对多的关系
      • 改进:允许用以实体在不同关系下由不同表示
        • TransH:投影到关系所属超平面
        • TransR:投影到关系所属向量空间
      • 改进:松弛唯一假设
        • TransM:为上述三种关系赋予较低的权重,在其中距离较大
        • TransF:只要求 t \bold t t h + r \bold h + \bold r h+r在同一方向, h \bold h h t − r \bold t - \bold r tr在同一方向
        • ManifoldE:要求 t \bold t t位于以 h + r \bold h + \bold r h+r为球心, θ r \theta_r θr为半径的超球面上
    • 语义匹配模型:基于相似度的打分函数衡量三元组成立可能性
      • 简单匹配模型:RESCAL及其变种
        • 将头尾实体的表示进行组合后再与关系表示进行匹配
      • 复杂匹配模型:深度神经模型
  • 模型训练
    • 开放世界假设
      • Logistic Loss
      • Pairwise Ranking Loss
      • 关键:生成负样本
    • 封闭世界假设
      • Squared Loss
  • 多元化信息融合的知识表示学习
    • 实体类别
    • 关系路径
    • 实体描述文本
    • 逻辑规则
  • 前沿:使用组合关系的嵌入表示得到规则表示
  • 前沿:时序预测推理,判断时间段内知识的成立情况
  • 前沿:低资源知识推理

总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值