Coursera - Algorithm (Stanford) - 课程笔记 - Week 14

NP-Complete Problems

  • 普遍的难解性:很多计算问题无法有效求解
  • 多项式时间可解问题:一个问题的算法时间复杂度为 O ( n k ) O(n^k) O(nk),其中 k k k为常数
  • P:所有多项式时间可解问题的集合,可以被多项式时间算法高效地解决
  • 背包问题是NP完全问题,虽然时间复杂度 θ ( n W ) \theta(n W) θ(nW),但是输入尺度是正比于 log ⁡ ( W ) \log (W) log(W)的,也就是非常数增长,并不是多项式( θ ( n 2 log ⁡ W ) \theta(n 2^{\log W}) θ(n2logW)
  • 旅行商问题
    • 输入:非负边权无向图
    • 输出:遍历所有顶点的环,代价最低
  • 规约:问题 π 1 \pi_1 π1归约到 π 2 \pi_2 π2,如果存在一个多项式时间算法解决 π 2 \pi_2 π2,那么就存在一个多项式时间算法解决 π 1 \pi_1 π1,反之亦然
  • 逆反性:如果 π 1 \pi_1 π1不在P中,那么 π 2 \pi_2 π2也不会是P中问题—— π 2 \pi_2 π2至少和 π 1 \pi_1 π1一样困难
  • C-完全性:对问题集合 C C C,有
    • π ∈ C \pi \in C πC
    • C C C中的任何问题都可以归约到 π \pi π
    • 那么 π \pi π是C-完全的—— C C C中最难的问题
  • 证明TSP是NP完全的——旅行商问题至少和暴力搜索问题一样难
  • 一个问题是NP的条件
    • 解的长度总是输入的多项式关系
    • 给定解可在多项式时间内得到验证
  • P = N P P=NP P=NP?如果存在一个NP完全问题的多项式算法,那么归约到其的所有NP问题都能够多项式时间内解决
  • 广泛的认知: P ≠ N P P \neq NP P=NP——尽管尚未被证明
  • NP——Nondeterministic Polynomial——不确定是否为多项式时间内可解问题
  • 近似求解NP问题的策略
    • 专注于可解的特例
    • 启发式解法——一些很快但不是总是正确的解法
    • 在指数时间内解决,但是比暴力搜索更快

Algorithms for NP-Complete Problems

  • 顶点覆盖问题
    • 输入:无向图 G = ( V , E ) G = (V, E) G=(V,E)
    • 目标:计算一个最小基数点覆盖子集 S ⊆ V S \subseteq V SV,保证每条边都有至少一个端点包含在其中
    • 一般情况下,顶点覆盖问题是一个NP完全问题
  • 假设:给定整数 k k k,那么算法需要检查是否存在一个 k k k个点的顶点覆盖集——一个很小的 k k k,可以在指数算法中很快地解决
    • 全局搜索? θ ( n k ) \theta(n^k) θ(nk)时间复杂度
    • 更聪明的搜索?
  • 子结构:给定图 G G G,存在边 ( u , v ) ∈ G (u, v) \in G (u,v)G,证书 k ≥ 1 k \ge 1 k1
    • G u G_u Gu G G G删除点 u u u及其关联的边
    • G v G_v Gv:同理
    • G G G中存在一个 k k k大小的顶点覆盖集 ⇔ \Leftrightarrow G u G_u Gu或者 G v G_v Gv中存在一个 k − 1 k - 1 k1大小的顶点覆盖集
  • 搜索算法
    • 随机选择一条边 ( u , v ) ∈ G (u, v) \in G (u,v)G
    • 递归地搜索 G u G_u Gu是否存在一个 k − 1 k - 1 k1大小的顶点覆盖集 S S S,若存在,则返回结果为 S ∪ { u } S \cup \{u\} S{u}
    • 递归地搜索 G v G_v Gv是否存在一个 k − 1 k - 1 k1大小的顶点覆盖集 S S S,若存在,则返回结果为 S ∪ { v } S \cup \{v\} S{v}
    • 时间复杂度: O ( 2 k ) O(2^k) O(2k)次递归调用,每一次递归产生子图需要 O ( m ) O(m) O(m),总事件复杂度为 O ( 2 k m ) O(2^k m) O(2km)——在 k k k保证 O ( log ⁡ n ) O(\log n) O(logn),可以实现多项式时间处理,显然比暴力搜索好( O ( n k ) O(n^k) O(nk)
  • TSP问题?
    • 暴力搜索: O ( n ! ) O(n!) O(n!)
    • dp算法: O ( n 2 2 n ) O(n^2 2^n) O(n22n)——远比暴力搜索好
  • TSP的DP解法
    • 最优子结构?: L i j = max ⁡ { L i − 1 , k + c k j } L_{ij} = \max \{ L_{i - 1, k} + c_{kj} \} Lij=max{Li1,k+ckj},其中 L i − 1 , k L_{i - 1, k} Li1,k表示使用 i − 1 i - 1 i1条边,从 1 1 1 k k k的无重复最短路——问题:无法泛化问题
    • 思路:保证无重复节点,需要记住所有已遍历的节点(不要求顺序,复杂度大大降低)
    • 子问题: L S , j L_{S, j} LS,j,对于目的地 j ∈ { 1 , … , n } j \in \{1, \dots, n\} j{1,,n},每一个包含 1 1 1 j j j的子集 S = { 1 , … , n } S = \{1, \dots, n\} S={1,,n},从 1 1 1 j j j恰遍历了所有 S S S中顶点的路径最小长度
    • 最优子结构: L S , j = min ⁡ k ∈ S , k ≠ j { L S − { j } , k + c k j } L_{S, j} = \min_{k \in S, k \neq j} \{L_{S - \{j\}, k} + c_{kj}\} LS,j=minkS,k=j{LS{j},k+ckj}
    • 实现
      • 初始化: A [ S , 1 ] = { 0 if  S = { 1 } + ∞ otherwise A[S, 1] = \begin{cases} 0 & \text{if} \ S = \{1\} \\ +\infty & \text{otherwise} \end{cases} A[S,1]={0+if S={1}otherwise
      • 循环: m = 2 , … , n m = 2, \dots, n m=2,,n S ⊆ { 1 , … , n } S \subseteq \{1, \dots, n \} S{1,,n},大小为 m m m,同时包含元素 1 1 1
        • 对任意 j ∈ S j \in S jS A [ S , j ] = min ⁡ k ∈ S , k ≠ j { A [ S − { j } , k ] + c k j } A[S, j] = \min_{k \in S, k \neq j} \{A[S-\{j\}, k] + c_{kj}\} A[S,j]=minkS,k=j{A[S{j},k]+ckj}
      • 最优结果: min ⁡ j { A [ { 1 , … , n } , j ] + c j 1 } \min_j \{A[\{1, \dots, n\}, j] + c_{j1}\} minj{A[{1,,n},j]+cj1}
    • 时间复杂度
      • j j j的选择: O ( n ) O(n) O(n)
      • S S S的选择: O ( 2 n ) O(2^n) O(2n)
      • 每次更新的遍历比较: O ( n ) O(n) O(n)
      • 总复杂度 ( n 2 2 n ) (n^2 2^n) (n22n)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值