泽泥克变换 Zernike

 function zern = zernike(r,t,n,m)

    % Returns a matrix corresponding to the Zernike polynomial of radial
    % degree n and azimuthal degree m.
    % Matrices r and t correspond to the radii and angles of points on an 
    % x-y grid satisfying 1>x>-1 and 1>y>-1; they are obtained via 
    % cart2pol. See example for clarification.
    % Must satisfy n - m >= 0, n - m even, and n >= 0. n and m are 
    % both integers.
    % Function elliptical_crop should be used in this context to ignore all 
    % data outside of the unit circle.
    %
    % Example 1:
    %
    %     % Display the 'power' Zernike polynomial (n = 2, m = 0) over a 
    %     % 100x100 grid.
    %
    %     x=linspace(-1,1,100);
    %     y=linspace(1,-1,100);
    %     [x,y] = meshgrid(x,y);
    %     [t,r] = cart2pol(x,y);
    %     z_power = zernike(r,t,2,0);
    %     figure, imagesc(elliptical_crop(z_power,1));
    %     colormap jet;
    %
    % Example 2:
    %
    %     % Display all Zernike polynomials up to radial degree 4 over a
    %     % 100x100 grid.
    % 
    %     for n = 0:4
    %         for m = -n:2:n
    %             x=linspace(-1,1,100);
    %             y=linspace(1,-1,100);
    %             [x,y] = meshgrid(x,y);
    %             [t,r] = cart2pol(x,y);
    %             zern_mat = zernike(r,t,n,m);
    %             figure, imagesc(elliptical_crop(zern_mat,1));
    %             title(strcat('n = ',{' '},string(n),', m = ',{' '},string(m)));
    %             colormap jet;
    %         end
    %     end
    %
    %
    % Functions required for use: elliptical_crop, zernike_radial
    % See also: zernike_moments, zernike_recreation
    % 
    % Evan Czako, 8.14.2019
    % -------------------------------------------
    
    if mod(n-m,2) == 1
        error('n-m must be even');
    end
    if n < 0
        error('n must both be positive')
    end
    if floor(n) ~= n || floor(m) ~= m
        error('n and m must both be integers')
    end

    if m < 0
        zern = -zernike_radial(r,n,-m).*sin(m*t);
    else
        zern = zernike_radial(r,n,m).*cos(m*t);
    end
end

function zernikeMatrices = zernike_mats(im,zernike_indices)
    
    % Returns an array of matrices corresponding to the Zernike polynomials
    % of degrees n and m as defined by the two columns of zernike_indices,
    % where the first column contains values of n and the second column
    % contains values of m. The dimensions of these matrices will be the
    % same as that of im.
    % This code is intended to be used as a helper function for
    % zernike_moments and zernike_recreation.
    %
    % Example:
    %     
    %     % Create some function z(x,y) over a 125x75 grid.
    %
    %     x=linspace(-1,1,75);
    %     y=linspace(1,-1,125);
    %     [x,y] = meshgrid(x,y);
    %     z = x.^2+y;
    %     figure,imagesc(elliptical_crop(z,1));
    %     colormap jet;
    %     title('z(x,y)');
    %
    %     % Specify the indices of Zernike polynomials of interest. In this
    %     % case, the indices correspond to the "piston", "x-tilt", "y-tilt",
    %     % and "power" Zernike polynomials.
    %
    %     indices = [0 0; 1 -1; 1 1; 2 0];
    %     zern_mats = zernike_mats(z,indices);
    %     for i = 1:size(zern_mats,3)
    %         figure, imagesc(elliptical_crop(zern_mats(:,:,i),1));
    %         colormap jet;
    %         title(indices(i,:));
    %     end
    %       
    %     % The images displayed show these four Zernike polynomials over
    %     % 125x75 grids.
    %
    % Functions required for use: zernike, zernike_radial, elliptical_crop 
    % See also: zernike_moments, zernike_recreation
    % 
    % Evan Czako, 8.14.2019
    % -------------------------------------------
    
    dim=size(im);
    x=linspace(-1,1,dim(2));
    y=linspace(1,-1,dim(1));
    [x,y] = meshgrid(x,y);
    [t,r] = cart2pol(x,y);
    
    zernikeMatrices = [];
    
    for i = 1:size(zernike_indices,1)
        zernikeMatrices(:,:,i) = zernike(r,t,zernike_indices(i,1),zernike_indices(i,2));
        zernikeMatrices(:,:,i) = elliptical_crop(zernikeMatrices(:,:,i),1);
    end
    
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值