以圆点O(0,0)为直角坐标系的中心,如何计算任意一点的坐标

以圆点O(0,0)为直角坐标系的中心,如何计算任意一点的坐标

定义公式

圆点O(0,0)

半径为r

任意一点的坐标为(x,y)

角度为θ

假设角度为已知,或者通过量角器获得,或点具有等分比例

通过sinθ=y/r,cosθ=x/r两个公式来分别获得坐标x和y

x= r*cosθ

y=r*sinθ

sinθ值计算

"θ"表示弧度,sinθ表示θ角的正弦值。而在实际计算中需要把通常意义的角度转换为弧度。

θ= π*\frac{角度°}{180°}

圆上任意一点的坐标结论公式:

x = r* cos(π * θ / 180)

y = r * sin(π * θ / 180)

正弦定理

正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =D/sinC = 2r=D(r为外接圆半径,D为直径)。

余弦(余弦函数)

余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R),其中x是角度,函数值是该角度的余弦值。对于任意角度θ,其余弦值可以通过单位圆上的点的坐标来计算,即cosθ等于该角度对应的点(x, 0)的x坐标值

角度转换为弧度,再求正余弦值 

在数学中,‌我们知道1°等于 \frac{π}{180}  弧度。‌因此,‌当我们把一个数乘以π,‌然后再除以180时,‌实际上是将这个数从角度转换为弧度。‌在这个过程中,‌这个数的数值本身并没有发生变化,‌只是它的单位从角度变为了弧度。‌因此,‌当我们对这个结果求正余弦值时,‌由于正余弦函数是保持数值大小不变的变换,‌所以最终得到的正余弦值与原始的这个数在数值上是相同的。‌换句话说,‌这个过程实际上是将一个角度值转换为对应的弧度值,‌然后对这个弧度值求正余弦,‌结果仍然是原始的这个数在角度制下的正余弦值。

如何画一个五角星

圆心为(0,0), 半径为R,所在圆上的角度为arc,转换为弧度为  arc/180*3.14159

坐标轴右边R处,为第一个点,逆时针每72°一个点,构成五角星的顶点。

第一个点为 (R,0), arc=0,

QPoint(R,0)

第n个点(n≤5), arc=0

 QPoint(R*qCos((n-1)72/180*3.14159), -R*qSin((n-1)72/180*3.14159))

Y轴为负数解释,坐标系右为正,左为负,下为正,上为负

回顾复习高中数学正余弦定理.....

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

castlooo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值