极坐标t1t2几何意义_关于极坐标

本文全面介绍了极坐标系统的基本概念,包括极坐标和直角坐标的转换,以及如何将直角坐标系下的曲线方程转换为极坐标系。文章深入探讨了不同类型的曲线,如圆心在原点或不在原点的圆、椭圆,以及直线在极坐标系下的表示。此外,文章还讲解了用极坐标描述区域和处理微元的方法,并在多元微积分中展示了极坐标变换的应用,包括标量函数的坐标变换和二重积分的坐标变换。
摘要由CSDN通过智能技术生成

a73904bf8a7c719071454ad8c1f0a12e.png

极坐标其实很简单,但总有同学在应用的时候出现问题。所以干脆从头到尾来梳理一下极坐标的相关问题。

这个笔记有点长,所以还是弄个目录,虽然没法跳转但也好过一直拉拉拉拉。。。

目 录
—、极坐标的基本概念
二、极坐标和直角坐标的转换
三、直角坐标系下的曲线方程转换为极坐标系下的曲线方程
(1)圆心在原点的圆:

(2)圆心过原点的椭圆方程:

(3)直线
四、对称中心不在原点的封闭曲线
(1)圆心不在原点的圆
(2)对称中心不在原点的椭圆
(3)圆锥曲线的统一极坐标方程(极心在圆锥曲线的焦点)
五、用极坐标描述区域
(1)圆形区域
(2)直线围成的区域
六、用极坐标处理微元
七、多元微积分中的极坐标变换
(1)标量函数的坐标变换
(2)二重积分中的坐标变换
(3)扩展到三重积分的情形

一、极坐标的基本概念

49b0705c5b498819a309b0b4a283c3f6.png

简单地说,极坐标就是:用角度和长度描述位置的坐标系。结合上图明确这三点:

  • 以原点
    为起点的射线作为参考系, 称
    极点,这条射线为极轴
  • 到原点的距离记为
    ,称为
    极径
  • 从参考系射线出发逆时针旋转到
    所经过的角度记为
    ,称为
    极角
从计算的角度上讲
的取值范围也可以根据实际问题灵活处理。比如可以写为
等。下文会有相应例子。

有了上述三个要素,空间中任意一点都可以用序对

表示。

二、极坐标和直角坐标的转换

将一个点

转换为平面坐标系
其实非常简单,只需要一个
三角形,如下图:

197df24856c904a84acfd0cecdf4f824.png

图中所示的方法可应用于极坐标和直角坐标的相互转换。上图描述的方式还可以总结为以下的表达式:

但是要特别注意:上式中

的值仅对上图展示的情况(
在第I象限)成立(此时
,同时该点不能为原点)。对于其它象限则需要根据具体情况进行处理。
上述转换方法仅限于二者圆点相同,且极坐标参考系与直角坐标的
轴方向相同的情况。下文将出现一些与上述示图不同的情形。

三、直角坐标系下的曲线方程转换为极坐标系下的曲线方程

(1)圆心在原点的圆:

用极坐标来描述圆的方程是最为合适的,所以从这个例子开始。考虑一个圆的方程:

先考虑该圆上任意一点

,其极坐标表示为
。由(1)式可知:

注意,由于在圆上

可以取
中任意值,因此在书写方程时可以不写出
的取值范围,可以理解为它的取值不受限制。因此圆在极坐标中的方程就可以写为:

(2)圆心过原点的椭圆方程:

圆其实可以看作是椭圆的一种特殊情况,由于也有圆周的特点,所以它也很适合用极坐标来表示。

但是要注意:这里我们要讨论的情形仍然是在极坐标和直角坐标的原点重合的前提下

此时我们设一个对称中心在原点上的椭圆:

在极坐标中任意一点可以写成:

从几何意义不难看出

就是点
在极坐标下的极角,因此在极坐标下有以下式子:

另外还有一种记法:

这里
是椭圆的离心率。这种记法的推导方式稍繁琐一些:

先将直角坐标系中的椭圆方程进行变换:
再代入极坐标变换:
提出
:
移项再开方得到:
如果分子分母同时除以
,再注意到
  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值