读《Ideal MHD》(1)-磁流体力学方程组推导

0.前言-重新出发

   Freidberg的这本《Ideal Magnetohydrodynamics》是我进入等体圈接触到的第一批书里面的一本,当时(8年前)读的时候觉得很是吃力,现在决定重新读一遍,并做好笔记。 之前开会的时候会经常遇见Freidberg, 他非常的平和,绅士,向他请教问题时他都是娓娓道来。但是早些年读这本书真的是给我留下了非常惨痛的回忆。

文中如果有表述的不对的地方,欢迎大家指出改正。

1. 动理学方程

  等离子体是大量处于电离状态的粒子组成的体系。在描述大量粒子组成的体系时,引入粒子在相空间 ( r , v ) (\mathbf{r},\mathbf{v}) (r,v)的分布函数 f ( r , v , t ) f(\mathbf{r},\mathbf{v},t) f(r,v,t) f ( r , v , t ) f(\mathbf{r},\mathbf{v},t) f(r,v,t)的含义为: f ( r , v , t ) d r d v f(\mathbf{r},\mathbf{v},t)d\mathbf{r}d\mathbf{v} f(r,v,t)drdv代表粒子空间位置在 r ∼ r + d r \mathbf{r} \sim\mathbf{r}+d\mathbf{r} rr+dr,速度在 v ∼ v + d v \mathbf{v} \sim\mathbf{v}+d\mathbf{v} vv+dv的粒子数目。等离子体中一般包括多种带正点的粒子,例如氢离子,氦粒子,还有带负电的电子。假设 α \alpha α类粒子的分布函数为 f α ( r , v , t ) f_{\alpha}(\mathbf{r},\mathbf{v},t) fα(r,v,t),则 f α ( r , v , t ) f_{\alpha}(\mathbf{r},\mathbf{v},t) fα(r,v,t)满足以下动理学方程,即Boltzman方程
∂ f α ∂ t + v ⋅ ∂ f α ∂ r + F α m α ⋅ ∂ f α ∂ v = ( ∂ f α ∂ t ) c (1.1) \frac{\partial f_{\alpha}}{\partial t}+\mathbf{v}\cdot\frac{\partial f_{\alpha}}{\partial \mathbf{r}} +\frac{\mathbf{F}_{\alpha}}{m_{\alpha}}\cdot\frac{\partial f_{\alpha}}{\partial \mathbf{v}} =\left(\frac{\partial f_{\alpha}}{\partial t}\right)_c \tag{1.1} tfα+vrfα+mαFαvfα=(tfα)c(1.1)
这里 m α m_{\alpha} mα是粒子的质量,等式右边 ( ∂ f α ∂ t ) c \left(\frac{\partial f_{\alpha}}{\partial t}\right)_c (tfα)c表示与 α \alpha α粒子所发生的碰撞项。

2. 有些枯燥的速度矩方程推导

  这部分内容是从微观的Boltzman方程到宏观的MHD方程的关键,在推导的过程中可以了解MHD方适用的条件,所以还是非常重要的。这部分的推导过程,在《Ideal MHD》书中没有非常详细的过程,大概是因为学物理的都知道该怎么推导吧。不过对于我这个做数学出身的小菜鸟来说,着实是费了一番功夫的, 主要参考了资料[2]。在下面的推导过程中,会省去下标 α \alpha α,并且对于等离子体,Boltzman方程中的受力即为洛伦兹力
F = q m ( E + v × B ) \mathbf{F}=\frac{q}{m}(\mathbf{E}+\mathbf{v}\times\mathbf{B}) F=mq(E+v×B)
式中的 E , B \mathbf{E},\mathbf{B} EB是自洽的电场强度和磁通量密度, q q q是粒子所带的电荷强度。
  对函数 ψ ( v ) \psi(\mathbf{v}) ψ(v),定义速度矩
< ψ ( v ) > = ∫ ψ ( v ) f ( r , v , t ) d v / n ( r , t ) \left<\psi(\mathbf{v})\right>=\left. \int\psi(\mathbf{v})f(\mathbf{r},\mathbf{v},t)d\mathbf{v}\middle/n(\mathbf{r},t)\right. ψ(v)=ψ(v)f(r,v,t)dv/n(r,t)
其中 n ( r , t ) = ∫ f ( r , v , t ) d v n(\mathbf{r},t)=\int f(\mathbf{r},\mathbf{v},t)d\mathbf{v} n(r,t)=f(r,v,t)dv,表示在 t t t时刻,位置 r \mathbf{r} r处的粒子数密度。速度矩其实就是函数在速度空间的一个平均。下面先来推导零阶,一阶,二阶,三阶速度矩方程。

  • 零阶矩
    n ( r , t ) = ∫ f ( r , v , t ) d v n(\mathbf{r},t)=\int f(\mathbf{r},\mathbf{v},t)d\mathbf{v} n(r,t)=f(r,v,t)dv
    为粒子密度函数。质量密度 ρ ( r , t ) = n m \rho(\mathbf{r},t)=nm ρ(r,t)=nm

  • 一阶矩
    ψ ( v ) = v \psi(\mathbf{v})=\mathbf{v} ψ(v)=v,则得到流体的平均速度
    u ( r , t ) = ∫ v f ( r , v , t ) d v / n ( r , t ) = < v > \mathbf{u}(\mathbf{r},t) =\int \mathbf{v}f(\mathbf{r},\mathbf{v},t)d\mathbf{v}/ n(\mathbf{r},t)=<\mathbf{v}> u(r,t)=vf(r,v,t)dv/n(r,t)=<v>
    定义 w = v − u ( r , t ) \mathbf{w}=\mathbf{v}-\mathbf{u}(\mathbf{r},t) w=vu(r,t),容易知道有 < w > = 0 <\mathbf{w}>=0 <w>=0,所以 w \mathbf{w} w表示无规则热运动。

  • 二阶矩
    ψ ( v ) = v v \psi(\mathbf{v})=\mathbf{v}\mathbf{v} ψ(v)=vv,这是一个二阶张量,一共有9个分量。
    定义
    P = n m < v v > = n m < ( u + w ) ( u + w ) > = n m < u u > + n m < w w > : = n m u u + p \begin{aligned} \mathbf{P}&=nm<\mathbf{v}\mathbf{v}>=nm<(\mathbf{u}+\mathbf{w})(\mathbf{u}+\mathbf{w})> \\&=nm<\mathbf{u}\mathbf{u}>+nm<\mathbf{w}\mathbf{w}> \\ &:=nm\mathbf{u}\mathbf{u}+\mathbf{p} \end{aligned} P=nm<vv>=nm<(u+w)(u+w)>=nm<uu>+nm<ww>:=nmuu+p
    这里 p \mathbf{p} p是热压强张量。根据对称性, p \mathbf{p} p只有6个独立的分量。如果体系处于局域热平衡状态,那么其分布函数为局域Maxwell分布
    f ( r , v , t ) = n ( r , t ) ( m 2 π T ( r , t ) ) 3 / 2 exp ⁡ ( − m w 2 2 T ( r , t ) ) f(\mathbf{r},\mathbf{v},t)=n(\mathbf{r},t)\left( \frac{m}{2\pi T(\mathbf{r},t)}\right)^{3/2} \exp\left(-\frac{mw^2}{2T(\mathbf{r},t)}\right) f(r,v,t)=n(r,t)(2πT(r,t)m)3/2exp(2T(r,t)mw2)
    利用分布函数可以计算得到
    p k k = < w k k > = n ( r , t ) T ( r , t ) = p ( r , t ) p_{kk} =<w_{kk}>=n(\mathbf{r},t)T(\mathbf{r},t)=p(\mathbf{r},t) pkk=<wkk>=n(r,t)T(r,t)=p(r,t)
    n m < w 2 > = ∑ k = 1 3 p k k = 3 n T = 3 p nm<w^2>=\sum^3_{k=1}p_{kk}=3nT=3p nm<w2>=k=13pkk=3nT=3p
    p \mathbf{p} p的对角项是热压强。
    这里还可以得到一个有物理意义的量:体系的总动能密度
    K = < 1 2 n m v 2 > = 1 2 ∑ k = 1 3 P k k = 1 2 n m u 2 + 3 2 p K=<\frac{1}{2}nmv^2>=\frac{1}{2}\sum^3_{k=1}P_{kk} =\frac{1}{2}nmu^2+\frac{3}{2}p K=<21nmv2>=21k=13Pkk=21nmu2+23p
    上式中的第一项为单位体积流体平均运动动能,第二项为热运动动能。
    现在我们定义粘滞应力张量
    Π = p − p I \mathbf{\Pi}=\mathbf{p}-p\mathbf{I} Π=ppI
    那么有关系式
    P = n m < v v > = n m < ( u + w ) ( u + w ) > = n m u u + p I + Π \mathbf{P}=nm<\mathbf{vv}>=nm<(\mathbf{u+w})(\mathbf{u+w})> =nm\mathbf{uu}+p\mathbf{I}+\mathbf{\Pi} P=nm<vv>=nm<(u+w)(u+w)>=nmuu+pI+Π

  • 三阶矩
    ψ ( v ) = m v v v \psi(\mathbf{v})=m\mathbf{vvv} ψ(v)=mvvv, 和分布函数对速度空间做积分可以得到一个三阶张量,一共有27个分量。 这里我们只关心有明确物理意义的分量
    Q = 1 2 n m < v 2 v > = 1 2 n m < v 2 ( u + w ) > = K u + 1 2 n m < v 2 w > = K u + n m u ⋅ < w w > + 1 2 n m < w 2 w > \begin{aligned} \mathbf{Q}&=\frac{1}{2}nm<v^2\mathbf{v}>=\frac{1}{2}nm<v^2\mathbf{(u+w)}> \\&=K\mathbf{u}+\frac{1}{2}nm<v^2\mathbf{w}> \\&=K\mathbf{u}+nm\mathbf{u}\cdot<\mathbf{ww}>+\frac{1}{2}nm<w^2\mathbf{w}> \end{aligned} Q=21nm<v2v>=21nm<v2(u+w)>=Ku+21nm<v2w>=Ku+nmu<ww>+21nm<w2w>
    如果我们定义
    q = 1 2 n m < w 2 w > \mathbf{q}=\frac{1}{2}nm<w^2\mathbf{w}> q=21nm<w2w>
    那么有
    Q = K u + u ⋅ p + q \mathbf{Q} =K\mathbf{u}+\mathbf{u}\cdot\mathbf{p}+\mathbf{q} Q=Ku+up+q
    上式中, K u K\mathbf{u} Ku的含义为流体宏观流动带走的总动能, u ⋅ p \mathbf{u}\cdot\mathbf{p} up的含义为流体宏观流动时压力张量做的功率, q \mathbf{q} q为热流矢量。 当流体宏观速度 u \mathbf{u} u为零时, K u K\mathbf{u} Ku u ⋅ p \mathbf{u}\cdot\mathbf{p} up都为零,但是 q \mathbf{q} q不为零,它是因为碰撞产生的热量从高温流体元到低温流体元的流动。

至此为止,我们刚刚做好了准备工作。下面要将在(1.1)式两端乘以 ψ ( v ) \psi(\mathbf{v}) ψ(v),并在速度空间做积分
∫ ψ ( v ) ∂ f ∂ t d v + ∫ ψ ( v ) v ⋅ ∂ f ∂ r d v + ∫ ψ ( v ) q m ( E + v × B ) ⋅ ∂ f ∂ v d v = ∫ ψ ( v ) ( ∂ f ∂ t ) c d v \begin{aligned} \int\psi(\mathbf{v})\frac{\partial f}{\partial t}d\mathbf{v} +\int\psi(\mathbf{v})\mathbf{v}\cdot\frac{\partial f}{\partial \mathbf{r}}d\mathbf{v} +\int\psi(\mathbf{v})\frac{q}{m}(\mathbf{E}+\mathbf{v}\times\mathbf{B})\cdot\frac{\partial f}{\partial \mathbf{v}}d\mathbf{v} =\int\psi(\mathbf{v})\left(\frac{\partial f}{\partial t}\right)_c d\mathbf{v} \end{aligned} ψ(v)tfdv+ψ(v)vrfdv+ψ(v)mq(E+v×B)vfdv=ψ(v)(tf)cdv
这里我们一项一项来分析,第一项第二项比较简单,这里需要注意的是我们是在广义坐标 ( r , v , t ) (\mathbf{r},\mathbf{v},t) (r,v,t)下来考虑的,所以
∫ ψ ( v ) ∂ f ∂ t d v = ∂ ∂ t ∫ ψ ( v ) f d v = ∂ ∂ t ( n < ψ ( v ) > ) \int\psi(\mathbf{v})\frac{\partial f}{\partial t}d\mathbf{v} =\frac{\partial}{\partial t}\int\psi(\mathbf{v}) fd\mathbf{v} =\frac{\partial}{\partial t}(n<\psi(\mathbf{v})>) ψ(v)tfdv=tψ(v)fdv=t(n<ψ(v)>)
在分析第二项的时候,这里将 ∂ ∂ r \frac{\partial}{\partial \mathbf{r}} r换成 ∇ \nabla ,两个符号是等价的
∫ ψ ( v ) v ⋅ ∇ f d v = ∇ ⋅ ∫ ψ ( v ) v f d v = ∇ ⋅ ( n < ψ ( v ) v > ) \int\psi(\mathbf{v})\mathbf{v}\cdot\nabla f d\mathbf{v}=\nabla\cdot\int\psi(\mathbf{v})\mathbf{v}fd\mathbf{v}=\nabla\cdot(n<\psi(\mathbf{v})\mathbf{v}>) ψ(v)vfdv=ψ(v)vfdv=(n<ψ(v)v>)
第三项因为是对 v \mathbf{v} v求微分,所以处理起来稍微要仔细一些,这里需要用到张量的运算公式 ∇ ⋅ ( A B ) = ( ∇ ⋅ A ) B + ( A ⋅ ∇ ) B \nabla\cdot(\mathbf{A}\mathbf{B})=(\nabla\cdot\mathbf{A})\mathbf{B}+(\mathbf{A}\cdot\nabla)\mathbf{B} (AB)=(A)B+(A)B ∇ ⋅ ( f A ) = ∇ f ⋅ A + f ∇ ⋅ A \nabla\cdot(f\mathbf{A})=\nabla f\cdot\mathbf{A}+f\nabla\cdot\mathbf{A} (fA)=fA+fA。为了记号简便,下面的公式中 ∂ ∂ v \frac{\partial}{\partial \mathbf{v}} v会用 ∇ v \nabla_{\mathbf{v}} v来替代。所以第三项为(注意这里推导的时候没有因子 q m \frac{q}{m} mq)
∫ ψ ( v ) ( E + v × B ) ⋅ ∇ v f d v = ∫ ψ ( v ) { ∇ v ⋅ [ ( E + v × B ) f ] − ∇ v ⋅ ( E + v × B ) f } = ∫ ψ ( v ) { ∇ v ⋅ [ ( E + v × B ) f ] } = ∫ ∇ v ⋅ [ ψ ( v ) ( E + v × B ) f ] − ( E + v × B ) f ⋅ ∇ v ψ ( v ) d v = [ ψ ( v ) ( E + v × B ) f ] 边 界 − ∫ ( E + v × B ) f ⋅ ∇ v ψ ( v ) d v \begin{aligned} &\int\psi(\mathbf{v})(\mathbf{E}+\mathbf{v}\times\mathbf{B})\cdot\nabla_{\mathbf{v}}fd\mathbf{v} \\&=\int\psi(\mathbf{v}) \left\{\nabla_{\mathbf{v}}\cdot\left[(\mathbf{E+v\times B})f\right]- \nabla_{\mathbf{v}}\cdot(\mathbf{E+v\times B})f\right\} \\&=\int\psi(\mathbf{v}) \left\{\nabla_{\mathbf{v}}\cdot\left[(\mathbf{E+v\times B})f \right] \right\} \\&=\int \nabla_{\mathbf{v}}\cdot\left[\psi(\mathbf{v})(\mathbf{E+v\times B})f\right]-(\mathbf{E+v\times B})f\cdot\nabla_{\mathbf{v}}\psi(\mathbf{v}) d\mathbf{v} \\&=\left[\psi(\mathbf{v})(\mathbf{E+v\times B})f\right]_{边界}-\int (\mathbf{E+v\times B})f\cdot\nabla_{\mathbf{v}}\psi(\mathbf{v}) d\mathbf{v} \end{aligned} ψ(v)(E+v×B)vfdv=ψ(v){v[(E+v×B)f]v(E+v×B)f}=ψ(v){v[(E+v×B)f]}=v[ψ(v)(E+v×B)f](E+v×B)fvψ(v)dv=[ψ(v)(E+v×B)f](E+v×B)fvψ(v)dv
上的推导中,由于 E = E ( r , t ) \mathbf{E}=\mathbf{E}(\mathbf{r},t) E=E(r,t), 所以 ∇ v ⋅ E = 0 \nabla_{\mathbf{v}}\cdot \mathbf{E}=0 vE=0, 并且 ∇ v ⋅ ( v × B ) = 0 \nabla_{\mathbf{v}}\cdot(\mathbf{v\times B})=0 v(v×B)=0。因为当 v → ∞ \mathbf{v}\rightarrow\infty v时, f ( v ) → 0 f(\mathbf{v})\rightarrow 0 f(v)0,所以上式中的边界项为零。综合以上的推导,可以得到最后的速度矩方程

∂ ∂ t ( n < ψ ( v ) > ) + ∇ ⋅ ( n < ψ ( v ) v > ) − n q m E ⋅ < ∇ v ψ ( v ) > − n q m < ( v × B ) ⋅ ∇ v ψ ( v ) > = ∫ ψ ( v ) ( ∂ f ∂ t ) c d v (2.1) \begin{aligned} \frac{\partial}{\partial t}(n<\psi(\mathbf{v})>)&+\nabla\cdot(n<\psi(\mathbf{v})\mathbf{v}>)-\frac{nq}{m}\mathbf{E}\cdot<\nabla_{\mathbf{v}}\psi(\mathbf{v})> -\frac{nq}{m}<\mathbf{(v\times B})\cdot\nabla_{\mathbf{v}}\psi(\mathbf{v}) > \\&=\int\psi(\mathbf{v})\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v} \end{aligned} \tag{2.1} t(n<ψ(v)>)+(n<ψ(v)v>)mnqE<vψ(v)>mnq<(v×B)vψ(v)>=ψ(v)(tf)cdv(2.1)

3. 终于要看到磁流体方程组了

   下面我们要从(2.1)式出发,导出流体方程组了。 在这之前,需要假设:等离子体不存在粒子(电子,离子)之间的电离,复合等情况。也就是说(2.1)式中的碰撞项只包含弹性碰撞。等离子是由处于电离状态的电子、离子组成的粒子体系,如果其中的电子和离子没有达到平衡,那么电子和离子应作为两种不同的粒子体系,这样将得到双流体方程。如果电子和离子达到平衡,那么可以将等离子看做是电中性的流体,此时将得到单流体方程组。

3.1 双流体方程组

   接下来还是慢慢地来推导, 我们先来推导某种粒子的方程,然后再考虑不同的粒子。 首先在(2.1)式中,取 ψ ( v ) = 1 \psi(\mathbf{v})=1 ψ(v)=1, 结合之前准备工作推导的各阶矩,有
∂ n ∂ t + ∇ ⋅ ( n u ) = ∫ ( ∂ f ∂ t ) c d v \frac{\partial n}{\partial t}+\nabla\cdot(n\mathbf{u}) =\int\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v} tn+(nu)=(tf)cdv
分析下右端的碰撞项, ( ∂ f ∂ t ) c \left(\frac{\partial f}{\partial t}\right)_c (tf)c表示粒子由于碰撞(根据假设,只考虑弹性碰撞)导致分布函数的变化。 ∫ ( ∂ f ∂ t ) c d v \int\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v} (tf)cdv的含义就是 t t t时刻,在空间位置 r \mathbf{r} r,粒子数密度由于弹性碰撞的净增量。因为只考虑弹性碰撞(没有电离,复合等过程),所以这一项为零。从而得到了连续性方程
∂ n ∂ t + ∇ ⋅ ( n u ) = 0 \frac{\partial n}{\partial t}+\nabla\cdot(n\mathbf{u}) =0 tn+(nu)=0
上式两端乘以粒子的质量 m m m,则可以得到质量守恒方程
∂ ρ ∂ t + ∇ ⋅ ( ρ u ) = 0 \frac{\partial \rho}{\partial t}+\nabla\cdot(\rho\mathbf{u}) =0 tρ+(ρu)=0
这里用到了关系式 ρ = n m \rho=nm ρ=nm
   接下来,在(2.1)式中,取 ψ ( v ) = m v \psi(\mathbf{v})=m \mathbf{v} ψ(v)=mv, 那么可以得到

∂ ∂ t ( n m u ) + ∇ ⋅ ( n m < v v > ) − n q ( E + u × B ) = ∫ m v ( ∂ f ∂ t ) c d v \begin{aligned} \frac{\partial}{\partial t}(nm \mathbf{u})&+\nabla\cdot(nm< \mathbf{v}\mathbf{v}>)-nq(\mathbf{E+u\times B}) \\&=\int m \mathbf{v}\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v} \end{aligned} t(nmu)+(nm<vv>)nq(E+u×B)=mv(tf)cdv
上式中,记 F = q E + u × B \mathbf{F}=q\mathbf{E+u\times B} F=qE+u×B,为洛伦兹力。 n m < v v > = n m u u + p I + Π nm<\mathbf{vv}>=nm\mathbf{uu}+p\mathbf{I+\Pi} nm<vv>=nmuu+pI+Π。 这里还需要分析一下右端的碰撞项
∫ m v ( ∂ f ∂ t ) c d v = ∫ m ( u + w ) ( ∂ f ∂ t ) c d v = ∫ m w ( ∂ f ∂ t ) c d v : = R \begin{aligned} \int m \mathbf{v}\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v} &=\int m \mathbf{(u+w)}\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v} \\&=\int m \mathbf{w}\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v}:=\mathbf{R} \end{aligned} mv(tf)cdv=m(u+w)(tf)cdv=mw(tf)cdv:=R
这一项表示由粒子做无规则热运动时碰撞所导致的动量的改变,在宏观体现为摩擦力。综上,可以得到动量方程
n m ∂ u ∂ t + n m ∇ ⋅ ( u u ) = n F − ∇ p − ∇ ⋅ Π + R \begin{aligned} nm\frac{\partial \mathbf{u}}{\partial t}+nm\nabla\cdot( \mathbf{uu}) =n\mathbf{F}-\nabla p-\nabla\cdot\mathbf{\Pi+R} \end{aligned} nmtu+nm(uu)=nFpΠ+R
引入随体导数
d d t ≡ ∂ ∂ t + u ⋅ ∇ \frac{d}{dt}\equiv\frac{\partial}{\partial t}+\mathbf{u}\cdot\nabla dtdt+u
动量方程可以表达为
n m d u d t = n F − ∇ p − ∇ ⋅ Π + R \begin{aligned} nm\frac{d\mathbf{u}}{d t}=n\mathbf{F}-\nabla p-\nabla\cdot\mathbf{\Pi+R} \end{aligned} nmdtdu=nFpΠ+R
   快接近尾声了,再接下来,在(2.1)式中,取 ψ ( v ) = 1 2 m v 2 \psi(\mathbf{v})= \frac{1}{2}m v^2 ψ(v)=21mv2, 那么可以得到
∂ ∂ t ( n < 1 2 m v 2 > ) + ∇ ⋅ ( n < 1 2 m v 2 v > ) − n q m E ⋅ < m v > − n q m < ( v × B ) ⋅ m v > = ∫ 1 2 m v 2 ( ∂ f ∂ t ) c d v \begin{aligned} \frac{\partial}{\partial t}(n<\frac{1}{2}m v^2>)&+\nabla\cdot(n<\frac{1}{2}m v^2\mathbf{v}>)-\frac{nq}{m}\mathbf{E}\cdot<m\mathbf{v}> -\frac{nq}{m}<\mathbf{(v\times B})\cdot m\mathbf{v}> \\&=\int\frac{1}{2}m v^2\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v} \end{aligned} t(n<21mv2>)+(n<21mv2v>)mnqE<mv>mnq<(v×B)mv>=21mv2(tf)cdv
之前我们在计算二阶矩的时候,定义了 K = < 1 2 n m v 2 > K=<\frac{1}{2}nmv^2> K=<21nmv2>,计算三阶矩的时候有 Q = < 1 2 n m v 2 v > \mathbf{Q}=<\frac{1}{2}nmv^2\mathbf{v}> Q=<21nmv2v>。同样这里还需要分析下右端的碰撞项
∫ 1 2 m v 2 ( ∂ f ∂ t ) c d v = ∫ 1 2 m ( u 2 + 2 u ⋅ w + w 2 ) ( ∂ f ∂ t ) c d v = u ⋅ R + Q \begin{aligned} \int\frac{1}{2}m v^2\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v}&= \int\frac{1}{2}m (u^2+2\mathbf{u\cdot w}+w^2)\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v}\\&= \mathbf{u\cdot R}+Q \end{aligned} 21mv2(tf)cdv=21m(u2+2uw+w2)(tf)cdv=uR+Q
上式中,定义了 Q = ∫ 1 2 m w 2 ( ∂ f ∂ t ) c d v Q=\int\frac{1}{2}m w^2\left(\frac{\partial f}{\partial t}\right)_cd\mathbf{v} Q=21mw2(tf)cdv,表示粒子的弹性碰撞引起的热能交换。综上得到了能量方程
∂ K ∂ t = − ∇ ⋅ Q + n q E ⋅ u + u ⋅ R + Q \begin{aligned} \frac{\partial K}{\partial t}=-\nabla\cdot \mathbf{Q}+nq\mathbf{E}\cdot \mathbf{u} +\mathbf{u\cdot R}+Q \end{aligned} tK=Q+nqEu+uR+Q
结合质量守恒方程,动量方程,在等离子体处于局部热平衡假设的前提下,上式可以简化为关于 T T T的方程,
3 2 n ∂ T ∂ t + p ⋅ ∇ ⋅ u + ∇ ⋅ q = Q \frac{3}{2}n\frac{\partial T}{\partial t} +\mathbf{p}\cdot\nabla\cdot\mathbf{u}+\nabla\cdot\mathbf{q}=Q 23ntT+pu+q=Q
上面推导的式子中加上粒子种类的标识 α \alpha α,再结合Maxwell方程组,至此,我们终于得到了双流体方程组:
∂ n α ∂ t + ∇ ⋅ ( n α u α ) = 0 n α m α d u α d t = n F α − ∇ p α − ∇ ⋅ Π α + R α 3 2 n d T α d t + p α ⋅ ∇ ⋅ u α + ∇ ⋅ q α = Q α ∇ × E = − ∂ B ∂ t ∇ × B = μ 0 ∑ n α q α u α + ∂ E ∂ t ∇ ⋅ E = 1 ϵ 0 ∑ n α q α ∇ ⋅ B = 0 \begin{aligned} &\frac{\partial n_\alpha}{\partial t}+\nabla\cdot(n_\alpha\mathbf{u}_\alpha) =0\\& n_\alpha m_\alpha\frac{d \mathbf{u}_\alpha }{d t} =n\mathbf{F}_\alpha-\nabla p_\alpha-\nabla\cdot\mathbf{\Pi_\alpha+R_\alpha}\\& \frac{3}{2}n\frac{d T_\alpha}{d t} +\mathbf{p_\alpha}\cdot\nabla\cdot\mathbf{u}_\alpha+\nabla\cdot\mathbf{q}_\alpha=Q_\alpha \\& \nabla\times\mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}\\& \nabla\times\mathbf{B}=\mu_0\sum n_\alpha q_\alpha\mathbf{u}_\alpha +\frac{\partial \mathbf{E}}{\partial t}\\& \nabla\cdot\mathbf{E}=\frac{1}{\epsilon_0}\sum n_\alpha q_\alpha \\&\nabla\cdot\mathbf{B}=0 \end{aligned} tnα+(nαuα)=0nαmαdtduα=nFαpαΠα+Rα23ndtdTα+pαuα+qα=Qα×E=tB×B=μ0nαqαuα+tEE=ϵ01nαqαB=0
不知道是不是篇幅有点长,编辑文章的时候实在是很卡。所以理想磁流体方程的推导就放到下篇。

===================================================================
参考资料:
[1] (最重要的当然是读的这本书啦)Jeffrey P. Freidberg, Ideal Magnetohydrodynamics
[2]https://max.book118.com/html/2018/0512/166044967.shtm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值