L1-048 矩阵A乘以B (15 分)

在这里插入图片描述
输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。

输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb,其中Ca是A的列数,Rb是B的行数。

输入样例1:
2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8
输出样例1:
2 4
20 22 24 16
53 58 63 28
输入样例2:
3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72
输出样例2:
Error: 2 != 3
矩阵乘法,应该都接触过了把,就不多赘述
核心式子M3[i][j]+=M1[i][k]*M2[k][j];

#include <bits/stdc++.h>
#include <cmath>
using namespace std;
int M1[1001][1001]={0},M2[1001][1001]={0},M3[1001][1001]={0};

int main() {
	int a,b,mc1,mr1;cin>>a>>b;//row行,column列
	for(int i=0;i<a;i++)
	{
		for(int j=0;j<b;j++)
		{
			cin>>M1[i][j];
		}
	}mc1=a,mr1=b;
	int mc2,mr2;cin>>a>>b;
	for(int i=0;i<a;i++)
	{
		for(int j=0;j<b;j++)
		{
			cin>>M2[i][j];
		}
		

	}mc2=a,mr2=b;
	
	
	if(mr1==mc2)
	{
		a=mc1,b=mr2;
		int c=mr1;
		cout<<a<<" "<<b<<endl;
		for(int i=0;i<a;i++)
		{
			for(int j=0;j<b;j++)
			{
				for(int k=0;k<c;k++)
				{
					M3[i][j]+=M1[i][k]*M2[k][j];//乘法
				}
	
			}
		}
		
		for(int i=0;i<a;i++)
		{
			cout<<M3[i][0];
			for(int j=1;j<b;j++)
			{
				cout<<" "<<M3[i][j];
			}
			cout<<endl;
		}
	}
	else
	{
		printf("Error: %d != %d",mr1,mc2);
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值