There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
You may assume that there are no duplicate edges in the input prerequisites.
click to show more hints.
Hints:
This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
Topological sort could also be done via BFS.
There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
You may assume that there are no duplicate edges in the input prerequisites.
将课程看做顶点,先导关系看做边。这道题目可以转化为成判定一个有向图中是否含有环。AC码如下(代码中有解题思路注释):
public class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
int length = prerequisites.length;
int[] count = new int[numCourses];
LinkedList<Integer> zeroSet = new LinkedList<Integer>();
for(int i=0;i<prerequisites.length;i++){
count[prerequisites[i][0]]++;//先统计各个结点的入度
}
for(int i=0;i<count.length;i++){
if(count[i]==0)zeroSet.add(i);//入度为0的结点放入可执行集合中
}
if(zeroSet.size()==0)return false;//若初始的可执行集合为空,则返回false
int result = zeroSet.size();
while(!zeroSet.isEmpty()){
int x = zeroSet.remove();//依次拿出可执行集合里的课程
for(int i=0;i<prerequisites.length;i++){
if(prerequisites[i][1]==x){
count[prerequisites[i][0]]--;//若有以其作为先导课程的课程,该课程的入度可以-1
if(count[prerequisites[i][0]]==0){
result++;//当一个课程的入度减为0是,他也可以放入可执行集合,并将可执行集合的长度++
zeroSet.add(prerequisites[i][0]);
}
}
}
}
return numCourses==result;//判断是否所有课程都在可执行集合里,若是则可以列出题目所要求的课程列表
}
}