Leetcode 207(Java)

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
You may assume that there are no duplicate edges in the input prerequisites.
click to show more hints.

Hints:
This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
Topological sort could also be done via BFS.

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
You may assume that there are no duplicate edges in the input prerequisites.

将课程看做顶点,先导关系看做边。这道题目可以转化为成判定一个有向图中是否含有环。AC码如下(代码中有解题思路注释):

public class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        int length = prerequisites.length;
        int[] count  = new int[numCourses];
        LinkedList<Integer> zeroSet = new LinkedList<Integer>();
        for(int i=0;i<prerequisites.length;i++){
            count[prerequisites[i][0]]++;//先统计各个结点的入度
        }
        for(int i=0;i<count.length;i++){
            if(count[i]==0)zeroSet.add(i);//入度为0的结点放入可执行集合中
        }
        if(zeroSet.size()==0)return false;//若初始的可执行集合为空,则返回false
        int result = zeroSet.size();
        while(!zeroSet.isEmpty()){
            int x = zeroSet.remove();//依次拿出可执行集合里的课程
            for(int i=0;i<prerequisites.length;i++){
                if(prerequisites[i][1]==x){
                    count[prerequisites[i][0]]--;//若有以其作为先导课程的课程,该课程的入度可以-1
                    if(count[prerequisites[i][0]]==0){
                        result++;//当一个课程的入度减为0是,他也可以放入可执行集合,并将可执行集合的长度++
                        zeroSet.add(prerequisites[i][0]);
                    }
                }
            }
        }
        return numCourses==result;//判断是否所有课程都在可执行集合里,若是则可以列出题目所要求的课程列表
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值