完全平方数最大

29 篇文章 0 订阅
4 篇文章 0 订阅

问题描述:
从1 − N中找一些数乘起来使得答案是一个完全平方数,求这个完全平方数
最大可能是多少。
输入格式:
第一行一个数字N。
输出格式:
一行一个整数代表答案对100000007取模之后的答案。
样例输入:
7
样例输出:
144
样例解释:
但是塔外面有东西。
数据规模与约定:
对于20%的数据, 1 ≤ N ≤ 100。
对于50%的数据, 1 ≤ N ≤ 5000。
对于70%的数据, 1 ≤ N ≤ 105。
对于100%的数据, 1 ≤ N ≤ 5 × 106。
思路:
对于n的阶乘质因数分解后
如果一个素数次数是奇数那么不选这个素数
否则选这个素数
这样就能保证最大并且不会出现一个数的一部分选一部分不选的情况
因为不选的一定是素数

#include<iostream>
#include<cstdio>
#define lon unsigned long long
using namespace std;
const int maxn=5000010;
const int mod=100000007;
lon n,tot,ans=1,c[maxn],prime[maxn];
bool flag[maxn];
void prepare()
{
    for(int i=2;i<=n;i++)
    if(!flag[i])
    {
        prime[++tot]=i;
        for(int j=i+i;j<=n;j+=i)
        flag[j]=1;
    }
}
void jie()//对于结成分解质因数***
{
    for(int i=1;i<=tot;i++)
    {
        lon tmp=n;
        while(tmp)
        {
            c[i]+=tmp/prime[i];
            tmp/=prime[i];
        }
    }
}
lon quick_power(lon x,lon y)
{
    lon tmp=1;
    while(y)
    {
        if(y&1)
        tmp=tmp*x%mod;
        x=x*x%mod;
        y>>=1;
    }
    return tmp%mod;
}
int main()
{
    freopen("hao.in","r",stdin);
    freopen("hao.out","w",stdout);
    cin>>n;
    prepare();
    jie();
    for(int i=1;i<=tot;i++)
    ans=(ans*quick_power(prime[i],c[i]/2*2)%mod)%mod;
    cout<<ans;
    fclose(stdin);fclose(stdout);
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值