题目描述:
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:输入:n = 13
输出:2
解释:13 = 4 + 9
提示:1 <= n <= 104
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/perfect-squares
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析:
这道题不怎么会,想到了是动归,但是没有想到是怎么转换的,只好去看了题解 。
题解的思路是,dp[i]代表和为 i
的完全平方数的最少数量 。则我们可以知道,能够组成和为i的完全平方数,则该完全平方数最小为1,最大为i。对应的开根号之后的数字j,最小为1,最大为根号i。
即对于一个数字i,他可以由两部分组成,一部分是数字j的平方j*j,另一部分是i和j*j的差i-j*j。
即数字i的完全平方数的和=j*j+数组i-j*j的完全平方数的和。
由于1<=j<=根号i,故我们遍历j,就可以找到和为 i
的完全平方数的最少数量。用公式表示:
dp[i]=1+min( dp[i-j*j] )
以数字19为例,求解和为19的完全平方数,则j的取值范围为:1<=j<=4 ,则:
dp[19] = 1+dp[19-1*1] = 1+dp[18]
dp[19] = 1+dp[19-2*2] = 1+dp[15]
dp[19] = 1+dp[19-3*3] = 1+dp[10]
dp[19] = 1+dp[19-4*4] = 1+dp[3]
我们从中寻找最小的dp[19]来作为最后真正的dp[19]即可。
更详细的思路,请看题解:
代码如下:
class Solution {
public:
int numSquares(int n) {
int dp[10005];
// 初始情况下,dp[0]为0
dp[0]=0;
// 依次求取dp[1]~dp[n]
for(int i=1;i<=n;i++)
{
int min=2147483647;
// j从1~根号i,依次计算dp[j],选择最小的dp[j]
for(int j=1;j<=sqrt(i);j++)
{
if(dp[i-j*j]<min)
min=dp[i-j*j];
}
// 递推公式,dp[i]=1+最小的dp[j]
dp[i]=1+min;
}
return dp[n];
}
};