279. 完全平方数

题目描述:

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4
示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9
 
提示:

1 <= n <= 104

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/perfect-squares
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

分析:

这道题不怎么会,想到了是动归,但是没有想到是怎么转换的,只好去看了题解 。

        题解的思路是,dp[i]代表和为 i的完全平方数的最少数量 。则我们可以知道,能够组成和为i的完全平方数,则该完全平方数最小为1,最大为i。对应的开根号之后的数字j,最小为1,最大为根号i。

        即对于一个数字i,他可以由两部分组成,一部分是数字j的平方j*j,另一部分是i和j*j的差i-j*j。

即数字i的完全平方数的和=j*j+数组i-j*j的完全平方数的和。

        由于1<=j<=根号i,故我们遍历j,就可以找到和为 i的完全平方数的最少数量。用公式表示:

        dp[i]=1+min( dp[i-j*j] )

        以数字19为例,求解和为19的完全平方数,则j的取值范围为:1<=j<=4 ,则:

        dp[19] = 1+dp[19-1*1] = 1+dp[18]

        dp[19] = 1+dp[19-2*2] = 1+dp[15]

        dp[19] = 1+dp[19-3*3] = 1+dp[10]

        dp[19] = 1+dp[19-4*4] = 1+dp[3]

        我们从中寻找最小的dp[19]来作为最后真正的dp[19]即可。

更详细的思路,请看题解:

https://leetcode-cn.com/problems/perfect-squares/solution/wan-quan-ping-fang-shu-by-leetcode-solut-t99c/

代码如下:

class Solution {
public:
    int numSquares(int n) {
        int dp[10005];
        // 初始情况下,dp[0]为0
        dp[0]=0;
        // 依次求取dp[1]~dp[n]
        for(int i=1;i<=n;i++)
        {
            int min=2147483647;
            // j从1~根号i,依次计算dp[j],选择最小的dp[j]
            for(int j=1;j<=sqrt(i);j++)
            {
                if(dp[i-j*j]<min)
                min=dp[i-j*j];
            }
            // 递推公式,dp[i]=1+最小的dp[j]
            dp[i]=1+min;

        }
        
        return dp[n];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值