np问题(大数阶乘取模)

29 篇文章 0 订阅

np问题

题目描述:
LYK 喜欢研究一些比较困难的问题,比如 np 问题。
这次它又遇到一个棘手的 np 问题。问题是这个样子的:有两个数 n 和 p,求 n 的阶乘对 p 取模后的结果。
LYK 觉得所有 np 问题都是没有多项式复杂度的算法的,所以它打算求助即将要参加 noip的你,帮帮 LYK 吧!
输入格式(np.in):
输入一行两个整数 n,p。
输出格式(np.out):
输出一行一个整数表示答案。
输入样例:
3 4
输出样例:
2
数据范围:
对于 20%的数据: n,p<=5。
对于 40%的数据: n,p<=1000。
对于 60%的数据: n,p<=10000000。
对于 80%的数据: n<=10^18, p<=10000000。
对于另外 20%的数据: n<=10^18, p=1000000007。
其中大致有 50%的数据满足 n>=p。
思路:
若n>=p则,!n%p=0
对于%20的数据,p==1000000007,此时分块打表,每10000000打一个表,算出阶乘对p取模的结果。

打表程序:

#include<iostream>
#include<cstdio>
#define lon long long
using namespace std;
const int maxn=110;
lon n,p,a[maxn];
int main()
{
    freopen("1.out","w",stdout);lon ans=1;
    for(lon i=0;i<=1000000007;i+=10000000)
    {
        for(lon j=i+1;j<=i+10000000;j++)
        ans=(ans*j)%1000000007;
        cout<<ans<<",";
    }
    return 0;
}

正确程序:

#include<iostream>
#include<cstdio>
#define lon long long
using namespace std;
lon n,p;
lon a[110]={1,682498929,491101308,76479948,723816384,67347853,27368307,
625544428,199888908,888050723,927880474,281863274,661224977,623534362,
970055531,261384175,195888993,66404266,547665832,109838563,933245637,
724691727,368925948,268838846,136026497,112390913,135498044,217544623,
419363534,500780548,668123525,128487469,30977140,522049725,309058615,
386027524,189239124,148528617,940567523,917084264,429277690,996164327,
358655417,568392357,780072518,462639908,275105629,909210595,99199382,
703397904,733333339,97830135,608823837,256141983,141827977,696628828,
637939935,811575797,848924691,131772368,724464507,272814771,326159309,
456152084,903466878,92255682,769795511,373745190,606241871,825871994,
957939114,435887178,852304035,663307737,375297772,217598709,624148346,
671734977,624500515,748510389,203191898,423951674,629786193,672850561,
814362881,823845496,116667533,256473217,627655552,245795606,586445753,
172114298,193781724,778983779,83868974,315103615,965785236,492741665,
377329025,847549272,698611116};
int main()
{
    freopen("np.in","r",stdin);
    freopen("np.out","w",stdout);
    cin>>n>>p;
    if(n>=p)
    {
        cout<<0;
        return 0;
    }
    if(p==1000000007)
    {
        lon now=n/10000000;
        lon ans=a[now];
        for(lon i=now*10000000+1;i<=n;i++)
        ans=ans*i%p;
        cout<<ans%p;
        return 0;
    }
    lon ans=1;
    for(int i=1;i<=n;i++)
    ans=ans*i%p;
    cout<<ans%p;
    fclose(stdin);fclose(stdout);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值