机器学习
班德的祷告
这个作者很懒,什么都没留下…
展开
-
反向传播神经网络--自编码-解码器的数据形状(shape info)分析
反向传播神经网络–自编码-解码器的数据形状(shape info)分析目标分析自编码-解码器这种神经网络,训练时,数据形状的变化。Shape info A[3,2]表示A矩阵有3行2列。网络结构使用MNIST数据,输入层有 28 * 28 = 784个节点。第二层250个节点。第三层10个节点。第四层250个节点。第五层 28 * 28 = 784个节点。除了最后一层,其他层都...原创 2020-05-06 16:38:28 · 1056 阅读 · 0 评论 -
反向传播神经网络--基本原理(反向传播)
反向传播神经网络–基本原理(反向传播)反向传播代价函数/损失函数C (cost/loss)代价函数是用来估算最后一层节点输出的值 与 目标的值的差距的函数。如二次方损失函数,C=12n∑x∣∣y(x)−aL(x)∣∣2C = \frac{1}{2n}\sum_{x} || y(x) - a^{L}(x) ||^2C=2n1∑x∣∣y(x)−aL(x)∣∣2,通常为了方便计算和求导,会...原创 2020-05-05 20:34:51 · 2189 阅读 · 0 评论 -
反向传播神经网络--基本原理(前向传播)
反向传播神经网络–基本原理(前向传播)前向传播权重w (weight)如上图,w243w_{24}^{3}w243,表示从第2层(3-1=2)第4个节点 到 第3层第2个节点的权重。wjklw_{jk}^{l}wjkl中,l表示layer,j表示当前层第j个节点,k表示上一层第k个节。通常,一层节点中,会涉及到 P × Q 个权重,P是当前层节点的个数,Q是上一层节点的个数。偏转...原创 2020-05-05 20:34:08 · 916 阅读 · 0 评论