状压DP小结

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cbcbcbz/article/details/75861803

状压dp其实就是将状态压缩成2进制来保存

其特征就是看起来有点像搜索,每个格子的状态只有1或0

模板题,poj3254

就是先给一个map,在这个有些地方不能放牛,有些地方可以

然后牛与牛之间必须有间隔,问一共有多少种方法

然后状态转移方程就是dp[i][j]表示的是第i行,状态为j的时候的最大方案数


状态转移的时候判一下就好了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <iostream>
#define Mod 100000000
using namespace std;

int sta[6000];
int Map[15],dp[15][6000];

int main()
{
    int m,n;
    while(~scanf("%d %d",&m,&n))
    {
        memset(Map,0,sizeof(Map));
        memset(dp,0,sizeof(dp));
        for (int j=1;j<=m;j++)//先找到所有符合条件的状态,就是不能有间隔的
            for (int i=1;i<=n;i++)
        {
            int save;
            scanf("%d",&save);
            if (save==0)//找状态的同时就可以初始化了,当然有些题目比较复杂,初始化不能在这里面写,找完状态再写就好了
                Map[j]+=(1<<(i-1));
        }

        int cou(1);
        for (int k=0;k<(1<<n);k++)
        {
            if (!(k&(k<<1)))
            {
                sta[cou++]=k;
                if (!(k&Map[1]))
                    dp[1][cou-1]=1;
            }
        }//找到所有的状态并且完成初始化
        cou--;

        for (int i=2;i<=m;i++)
        {
            for (int k=1;k<=cou;k++)
            {
                if (!(sta[k]&Map[i]))
                {
                    for (int kk=1;kk<=cou;kk++)//后面就是遍历状态转移了
                        if (!(sta[k]&sta[kk]))
                        dp[i][k]+=dp[i-1][kk];
                }
            }
        }

        int ans(0);

        for (int k=1;k<=cou;k++)
            ans=(ans+dp[m][k])%Mod;
        printf("%d\n",ans);
    }
    return 0;
}



没有更多推荐了,返回首页