数位dp模板

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cbcbcbz/article/details/78330140

数位dp其实就是记忆化dfs也没什么好说的

现在看一个题,让你求出所有l到r的圆数,圆数就是这个数字转化成2进制后0的个数比1的个数多

开始写错了,就是没注意前导0的问题

dfs一般要传4个参数,一个是第几位,一个是状态,一个是需不需要上界,一个是有没有前导0

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <iostream>

using namespace std;

int dp[50][50];//dp[i][k]第i位,0比1多k-50个的方案数.因为k可能是负数嘛
char trans[50];


int dfs(int poi,int cha,int limit,int pre)//这一位是poi,上一位0比1多cha-50,pre表示有没有前导0
{
    if (!limit&&dp[poi][cha]!=-1)
        return dp[poi][cha];

    if (poi==0)
    {
        if (!limit)
            dp[poi][cha]=(cha>=50);
        return cha>=50;
    }

    int ans(0),up;

    if (!limit)
        up=1;
    else
        up=trans[poi];

    if (pre)
    {
        for (int k=0;k<=up;k++)
        if (k==0)
            ans+=dfs(poi-1,cha,limit&&k==up,1);
        else
            ans+=dfs(poi-1,cha-1,limit&&k==up,0);
        return ans;
    }

    for (int k=0;k<=up;k++)
        if (k==0)
            ans+=dfs(poi-1,cha+1,limit&&k==up,0);
        else
            ans+=dfs(poi-1,cha-1,limit&&k==up,0);

    if (!limit)
        dp[poi][cha]=ans;
    return ans;
}

int caltrans(int data)
{
    int ans(0);
    while(data)
    {
        ans++;
        trans[ans]=data%2;
        data/=2;
    }
    return ans;
}

int cal(int data)
{
    int n=caltrans(data);//这个是进行进制转换,看具体需要几进制把
    return dfs(n,50,1,1);
}

int main()
{
    int l,r;
    memset(dp,-1,sizeof(dp));
    while(~scanf("%d %d",&l,&r))
    {
        printf("%d\n",cal(r)-cal(l-1));
    }
    return 0;
}


没有更多推荐了,返回首页