企业级应用的技术困局

企业级应用的技术困局

发表时间:2010-5-14 10:22:02  发表者:夏景峰

软件开发商以及企业客户一向有保守的传统,因此企业级软件所应用的技术,往往是落后于时代的。有诸多例证:
例证一,当Web2.0出现之后,有些专家理所应当地认为Web2.0在企业的前景辽阔,于是提出所谓Enterprise 2.0。5年过去了,Web2.0已是明日黄花,而Enterprise2.0依旧只出现在专家、记者的博客里。并非企业的管理者不喜欢信息互动,而是随之带来的管理变局恐怕是管理者们无法掌控的。
例证二,以云计算为基础的各类XaaS(IaaS/PaaS/SaaS)应用,被IBM、Google、Amazon、Salesforce等大型厂商炒得火热,国内跟风的软件厂商亦大有人在。但企业的CIO如今有几个敢于将ERP、CRM、BI等核心业务托管给“云”?信息安全方面的顾虑是可以理解的,问题在于,我们为何不能像信任银行一样来信任Google或Amazon?
例证三,iPhone、iPad、Blackberry之类移动智能终端已随处可见,以Apple AppStore为核心,已经形成了一个庞大的产业链。然而,又有多少app属于企业应用呢?SAP、Oracle没做好准备,用友、金蝶也没有做好准备。
例证四,在Internet领域得到广泛采用的NoSQL风格设计,在哪家企业管理软件厂商的产品中出现过?
例证五,虚拟化技术省钱又环保,为何很少有企业认真地考虑如何部署实施呢?
... ...

换位思考一下,企业是盈利机器,而不是技术试验田。新技术能为企业带来什么呢?可能是鲜花与掌声,也可能是一盘难以下咽的苦果罢。

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值