梯度法

在方向矢量u 与梯度方向相反时方向导数取得最小值。梯度向量指向上坡,负梯度向量指向下坡,我们在负梯度方向上移动可以减少 f(x)。这被称为梯度下降法或者最速下降法。

啊呀,梯度就是多元函数的全导数,方向导数就是梯度投影到该方向上,梯度方向的方向导数当然是最大的(正数),梯度反方向的方向导数自然是最小的(负数)

但是对于梯度下降法x:=x -a * f'(x),a>0,岂不是在很小f'(x)时候前进很慢,不过这在峰值附近是需要的。我指的是某些平坦区域导数很小,且里目标区域很远,这可咋办啊

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值