全导数、偏导数、方向导数、梯度的不严谨理解

本文探讨了多元函数导数的概念,包括全导数、偏导数、方向导数和梯度。作者指出,二元函数的切线不是一个点而是一个平面,因此有无限多个全导数。偏导数和方向导数作为全导数的特例,分别对应坐标轴方向和特定方向的变化率。梯度则是指向函数增长最快方向的向量,由各坐标轴偏导数构成。通过计算偏导数即可得到梯度,它在优化问题和机器学习中有重要应用。
摘要由CSDN通过智能技术生成

全导数、偏导数、方向导数、梯度的不严谨理解

我们知道多元函数没有导数(是数)。【也许这样说不严谨,但我就是这么理解的…】

因为多元函数,例如二元函数(即空间中的三维图形),与图中的任意一个点相切的不是一条线(一元函数与某点相切的是一条线),而是一个平面,那么这个平面上过该点的每一条线都与该点相切,因此二元函数就有无数条切线,因此他就有无数多个导数,这里应该说有无数个全导数

全导数对我们来说研究的意义不大,因为无数个太多了,我们只需要在无数个全导数中挑出我们需要的比较关心的几个全导数即可,比如
(1)偏导数(也就是坐标轴方向的导数);
(2)方向导数(在某一点,沿不同方向有好多个全导数,如果我确定一个方向取该方向的这个导数,那么得到的这个导数就叫做方向导数);
(3)梯度(刚刚说了方向导数,首先确定一个点,那么在该点不同的方向导数他的斜率肯定不一样,也就是他的变化率不一样,而梯度就是取在该点变化率最大的一个方向导数,因此我们在说去负梯度方向时一般会说负梯度方向时下降最快的方向嘛!)
这么说梯度还挺重要的,那么梯度是方向导数中变化最快的一个向量,那在某一点有无穷多个方向,无穷多个方向导数,我该怎么在这无穷多个方向导数中找到这个梯度呀!结论是:某点的梯度刚好就是这一点的各坐标轴的偏导数构成的向量,因此我只需要计算该点的偏导数就可以同时得到梯度了(注意梯度是个向量,既有大小又有方向)。
这里只是个人想法,不一定严谨,欢迎大家指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值