堆化
二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找
堆化
二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。
“最小堆”的定义如下:
typedef struct _otherInfo
{
int i;
int j;
}OtherInfo;
typedef struct _minHeapNode
{
int value;
OtherInfo otherInfo;
}MinHeapNode, *PMinHeapNode;
typedef struct _minPQ {
PMinHeapNode heap_array; // 指向堆元素数组
int heap_size; // 当前堆中的元素个数
int capacity; //堆数组的大小
}MinHeap, *PMinHeap;
请实现最小堆的“堆化”函数:
void min_heapify(PMinHeap pq, int i);
其中 pq指向堆,i 为堆元素在数组中的下标。该函数假设元素i对应的子树都已经是最小堆(符合最小堆的要求),但元素i为根的子树并不是最小堆,min_heapify将对元素i及其子树的各结点进行调整,使其为一个最小堆。
(注:假设辅助函数 left、right、parent 和 swap_node 已正确实现,min_heapify 函数可直接使用。)
代码如下
#include <stdio.h>
#include <stdlib.h>
#include "minbinheap.h"void min_heapify(PMinHeap pq, int i){
int j=2*i+1;
MinHeapNode *p=pq->heap_array;while(j<=pq->heap_size-1){
if(p[j+1].value<p[j].value)j=j+1;
if(p[j].value<p[i].value){
swap_node(&p[j],&p[i]);
i=j;
j=2*i+1;
}
else return;
}}