- 博客(705)
- 资源 (11)
- 收藏
- 关注
原创 生成代码的Agent基线、对比指标、数据集研究
利用大型语言模型(LLM)代理进行自动代码生成的最新进展使我们更接近自动化软件开发的未来。然而,现有的单代理方法由于上下文长度的限制,在生成和改进大规模、复杂代码库方面存在局限性。为了解决这一挑战,我们提出了自组织多代理框架(SoA),这是一种新颖的多代理框架,能够实现大规模代码的可扩展和高效生成与优化。在 SoA 中,自组织代理独立地生成和修改代码组件,同时无缝协作来构建整个代码库。我们框架的一个关键特点是根据问题的复杂性自动增加代理数量,从而实现动态可扩展性。
2025-08-29 17:08:24
779
原创 MCP:模型上下文协议
MCP 起源于 2024 年 11 月 25 日 Anthropic 发布的文章 Introducing the Model Context Protocol【1】。MCP (Model Context Protocol,模型上下文协议)定义了应用程序和 AI 模型之间交换上下文信息的方式。这使得开发者能够以一致的方式将各种数据源、工具和功能连接到 AI 模型(一个中间协议层),就像 USB-C 让不同设备能够通过相同的接口连接一样。
2025-08-29 10:05:20
731
原创 xFinder:针对大型语言模型的稳健且精确的答案提取
图 1: 典型的 LLM 评估管道。一项系统评价揭示了现有评估管道的各个阶段存在多种不可靠性,如图 1 所示。当前的评估框架主要依靠正则表达式 (RegEx) 从模型输出中提取答案。例如,他们可能会选择**“答案是”等短语后面的内容作为关键响应**。然而,许多LLM无法生成标准化答案,这使得从输出中提取关键答案变得复杂。图 2 说明了当前评估框架未能正确提取响应的实例。常规规则无法提取答案的主要情况有两种:首先,当模型没有对评估问题产生相关响应时,其次,当模型的响应不符合标准时。
2025-08-28 11:19:28
688
原创 基于财报 PDF 的智能问答与溯源的多模态 RAG 图文问答系统——Datawhale AI夏令营
在信息载体多元化的背景下,企业财报等核心文档多以图文混排 PDF 形式呈现,传统文本导向的问答系统因无法融合图表信息,难以响应涉及跨模态关联的复杂查询(如 “某产品销售额在哪个季度下降”)。核心任务聚焦于构建多模态检索增强生成(RAG)系统,需完成四维度目标:解析图文混排 PDF 构建结构化知识库、实现跨模态语义检索、融合图文信息推理生成答案、精准标注答案来源(文件名及页码)。具体实践中,运用 Python 生态工具链:采用 MinerU 进行 PDF 深度解析,提取文本、表格及图像并生成图像语义描述;
2025-08-10 13:24:15
1066
原创 从 Seq2Seq 到 Transformer:深度学习注意力机制与编码-解码框架综述
本文首先介绍了序列到序列(Seq2Seq)模型的概念与演进过程,包括其在处理变长输入和输出序列方面的优势与局限。随后重点阐述了注意力机制(Attention)的提出背景、核心思想与重要特性,并结合自注意力(Self-Attention)、交叉注意力(Cross-Attention)等不同形式,剖析了它们在解决长时依赖与信息丢失问题中的关键作用。接着,本文详细展示了基于 Transformer 的编码器-解码器(Encoder-Decoder)结构,包括多头注意力、多层前馈网络、残差连接和掩码技术在解码过程中
2025-01-15 18:57:28
1250
原创 零基础定制大模型=基础模型+自定义数据集+微调--Datawhale AI
零基础定制大模型:lora原本要训练W这么多的参数,现在只用训练A和B的参数了,A和B的秩很小,所以其组成的适配器需要训练的参数很少,就降低了计算和存储成本。例如,使用Adam对GPT-3: 175B进行微调,与使用LoRA进行微调,可训练参数减少10,000倍和GPU内存需求减少3倍。将LoRA与量化相结合,优化内存使用和计算效率。添加少量可训练的参数,同时保持原始参数冻结。
2024-12-10 16:31:31
1104
原创 目标跟踪 - 学习
ByteTrack:通过关联每个检测框实现多目标跟踪沿着多目标跟踪(MOT)中tracking-by-detection的范式,我们提出了一种简单高效的数据关联方法BYTE。利用检测框和跟踪轨迹之间的相似性,在保留高分检测结果的同时,从低分检测结果中去除背景,挖掘出真正的物体(遮挡、模糊等困难样本),从而降低漏检并提高轨迹的连贯性。BYTE能轻松应用到9种state-of-the-art的MOT方法中,并取得1-10个点不等的IDF1指标的提升。
2024-10-27 11:26:19
882
原创 论文解释--大数据时代人工智能特征工程与数据可视化分析
随着信息技术的飞速发展,人类社会正面临着前所未有的数据泛滥。大数据的兴起不仅体现在数据量的爆发式增长上,还体现在数据的处理、访问和分析方式的创新变化上。这种转变引发了研究实践、企业管理乃至公共政策建设的颠覆性创新。在这个大数据时代,如何从浩瀚的数据海洋中提取出实用的知识和见解,是当前研究的核心挑战。特征工程是机器学习和人工智能的基石,涉及对初始数据进行预处理、变换和选择,以提取能够充分揭示问题核心特征的表征。高质量的特征选择不仅可以大大提高模型的性能,
2024-10-21 12:36:11
1082
原创 主成分分析PCA:Principal Component Analysis & 线性判别分析 LDA: Linear Discriminant Analysis
PCA个人理解
2024-09-26 11:13:10
421
原创 机器视觉 概念复习
对比度增强去除模糊降噪美化修复和修饰分割数字水印数字内容篡改检测物体检测人脸检测自动签名验证和识别这些功能对自动人脸识别有效吗?生物识别技术图像分析与理解1.分解2.周期3.共轭对称性,和幅值对称性4.线性和标度5.卷积定理1.定理3:对于任何有限数据集,如果样本中位数偏离样本均值,则至少存在一个样本与样本均值的距离大于样本与均值的平均绝对偏差,即让2.定理4:如果平均值偏离中位数,ITM算法将截断阈值单调地减小到零。
2024-09-22 12:02:14
928
原创 leetcode基础算法教程 #Datawhale
穷举:列举所有解,比较,得到满足条件解优势:编程简单,算法正确容易证明劣势:大数据情况下,效率低下。
2024-09-17 12:41:50
1370
原创 3.Datawhale AI夏令营 AIGC Task3:了解微调的基本原理,微调的各种参数,实现一个更好的效果,文生图的工作流平台工具ComfyUI
GUI 是 “Graphical User Interface”(图形用户界面)的缩写简单来说,GUI 就是你在电脑屏幕上看到的那种有图标、按钮和菜单的交互方式。ComfyUI是GUI的一种,用于操作图像的生成技术,将AIGC模块化,类似思维导图的流程图一样,控制图像生成。LoRA (Low-Rank Adaptation) 微调是一种用于在预训练模型上进行高效微调的技术。它可以通过高效且灵活的方式实现模型的个性化调整,使其能够适应特定的任务或领域,同时保持良好的泛化能力和较低的资源消耗。
2024-08-17 14:43:40
1032
原创 2.Datawhale AI夏令营 AIGC Task2:精读代码,实战进阶
Datawhale AI夏令营 AIGC Task2:精读代码,实战进阶
2024-08-12 12:37:37
735
原创 1.Datawhale AI夏令营 AIGC TASK1
提示词主体描述,细节描述,修饰词,艺术风格,艺术家【负向prompts】(lowres, low quality, worst quality:1.2), (text:1.2), deformed, black and white,disfigured, low contrast, cropped, missing fingers主体描述【提示】美丽可爱的女孩,微笑,16岁,牛仔夹克,渐变背景,柔和的色彩,柔和的灯光,电影边缘照明,明暗对比,动漫,超级细节,8k。
2024-08-08 20:58:01
878
原创 2.Datawhale AI夏令营 AI+气象 TASK2
在机器学习和深度学习中,特别是在处理诸如图像、视频、时间序列或科学数据等复杂数据类型时,一般对于回归任务而言, MSELoss是最常用的。
2024-07-30 00:39:44
1189
原创 1.Datawhale AI夏令营 AI+气象 TASK1
方便后续自定义数据集和数据加载类, 方便我们训练时取数据# Feature部分time=0)# GroundTruth部分class GT:# Feature部分 class Feature : def __init__(self) : self . path = feature_path。
2024-07-28 22:03:10
520
原创 1.Parallel Coordination 平行坐标图
我们最多可以可视化 3 维数据。但是我们有时需要可视化超过 3 维的数据才能获得更多的信息。我们经常使用 PCA 或 t-SNE 来降维并绘制它。在降维的情况下,可能会丢失大量信息。在某些情况下,我们需要考虑所有特征, 平行坐标图有助于做到这一点。
2024-07-23 15:33:37
661
原创 1.CNN: convolutional neural network
【【什么是CNN?】浙大大佬教你怎么卷CNN,卷积神经网络CNN从入门到实战,通俗易懂草履虫听了都点头(人工智能、深度学习、机器学习、计算机视觉)】
2024-07-22 21:57:27
719
原创 Interesting Website Text To ASCII Art Generator
Interesting Website Text To ASCII Art Generator
2024-07-19 11:15:25
417
原创 2.Machine Learning AndrewNG 2022: learning progress
It usesalgorithmsorpatternsf : resultw : weightb : error。
2024-07-18 22:29:30
569
原创 1.Machine Learning AndrewNG 2022: Prepare for study
【(强推|双字)2022吴恩达机器学习Deeplearning.ai课程】
2024-07-18 21:54:53
562
原创 《大数据分析与智能计算》电大考试回忆
4道简答题,一题15分,2道大题,一题20分开卷考试课后习题5.4原题课后习题14.2原题PPT 6.2PPT 19.5.1 例题原题PPT 19.6 例题原题PPT 19.6 没有对应给出学生成绩表格,要求查成绩PPT 13.2 没有对应例子PPT 6.1 例子原题改数据
2024-01-03 19:02:25
810
原创 IDEA编译Rebuild Project,target文件夹中文件没有生成
可能是Project Setting中Modules的Paths,也就是编译路径问题。IDEA编译Rebuild Project,target文件夹中文件没有生成。我的问题是编译到maven仓库里,运行的是本机的代码,导致程序找不到对应的类。应该改为当前项目的下的target文件夹。
2023-03-28 12:25:07
1681
pycurl-7.43.0.3-cp27-cp27m-win-amd64.whl
2024-07-18
pycurl-7.43.0.3-cp27-cp27m-win32.whl
2024-07-18
基于Python的图像分类 项目实践——图像分类项目材料.zip
2021-03-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人