数据结构-树

本文详细介绍了二叉树的基本概念,包括插入、查找和删除节点的步骤,以及前序、中序和后序遍历的实现。通过具体的代码示例,深入理解二叉树在数据结构中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有序数组:查找快,但删除和插入慢。
链表:插入和删除快,但查询慢。
:插入、删除、查询都很快。

二叉树:每个节点最多有两个节点的树。
二叉树的基本操作
(1)插入节点:比根节点小的放左边,大的放右边
(2)查找节点
(3)删除节点
比较复杂:在删除前需要查找要删除的节点,找到后,这要删除的节点有三种情况要考虑。
1.该节点是叶子节点,没有子节点

2.该节点有一个子节点

3.该节点有两个子节点

(4)遍历(递归实现):
前序:访问根节点,前序遍历左子树,前序遍历右子树
中序:中序遍历左子树,访问根节点,中序遍历右子树
后序:后序遍历左子树,后序遍历右子树,访问根节点

package com.chb.chap10;

public class Node {
	//数据项
	public long data;
	//多个数据项
	public String sData;
	//左子节点
	public Node leftChild;
	//右子节点
	public Node rightChild;
	
	public Node(long data,String sData) {
		this.data=data;
		this.sData=sData;
	}
	
	
}

package com.chb.chap10;

public class Tree {
	public Node root;//根节点
	//插入节点
	public void insert(long value,String sData) {
		//封装节点
		Node newnode=new Node(value,sData);
		//引用当前节点
		Node current=root;
		//引用父节点
		Node parent;
		//如果root为null,也就是第一次插入的时候
		if(root==null) {
			root=newnode;
			return;
		}else {
			while(true) {
				//父节点指向当前节点
				parent=current;
				//如果当前节点的数据日插入的节点要大,则向左走
				if(current.data>value) {
					current=current.leftChild;
					if(current==null) {
						parent.leftChild=newnode;
						return;
					}
				}else {
					current=current.rightChild;
					if(current==null) {
						parent.rightChild=newnode;
						return;
					}
				}
			}
		}
	}
	//查找节点
	public Node find(long value) {
		//引用当前节点,从根节点开始
		Node current=root;
		//循环,只要找的节点不等于当前节点的数据项
		while(current.data!=value) {
			//进行比较,比较查找值与当前节点的大小
			if(current.data>value) {
				current=current.leftChild;
			}else {
				current=current.rightChild;
			}
			//若果查不到,返回null
			if(current==null) {
				return null;
			}
		}
		return current;
	}
	
	//前序遍历
	public void frontSearch(Node localNode) {
		if(localNode!=null) {
			//访问根节点
			System.out.println(localNode.data+" "+localNode.sData);
			//前序遍历左子树
			frontSearch(localNode.leftChild);
			//前序遍历右左子树
			frontSearch(localNode.rightChild);
		}
	}
	//中序遍历
	public void midSearch(Node localNode) {
		if(localNode!=null) {
			//中序前序遍历左子树
			midSearch(localNode.leftChild);
			//访问根节点
			System.out.println(localNode.data+" "+localNode.sData);
			//中序遍历右左子树
			midSearch(localNode.rightChild);
		}
	}
	//后序遍历
		public void endSearch(Node localNode) {
			if(localNode!=null) {
				//后序前序遍历左子树
				endSearch(localNode.leftChild);
				//后序遍历右左子树
				endSearch(localNode.rightChild);
				//访问根节点
				System.out.println(localNode.data+" "+localNode.sData);
			}
		}
	public static void main(String[] args) {
		Tree tree=new Tree();
		tree.insert(10,"A");
		tree.insert(20,"B");
		tree.insert(15,"C");
		tree.insert(3,"D");
		
		System.out.println(tree.root.data);
		System.out.println(tree.root.rightChild.data);
		System.out.println(tree.root.leftChild.data);
		
		Node node=tree.find(20);
		System.out.println(node.data+" "+node.sData);
		
		System.out.println("++++++++++++++++前序遍历+++++++++++++++");
		tree.frontSearch(tree.root);
		
		System.out.println("++++++++++++++++中前序遍历+++++++++++++++");
		tree.midSearch(tree.root);
		
		System.out.println("++++++++++++++++后序遍历+++++++++++++++");
		tree.endSearch(tree.root);
	}
}

运行结果:
在这里插入图片描述

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值