数据结构-树

本文详细介绍了二叉树的基本概念,包括插入、查找和删除节点的步骤,以及前序、中序和后序遍历的实现。通过具体的代码示例,深入理解二叉树在数据结构中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有序数组:查找快,但删除和插入慢。
链表:插入和删除快,但查询慢。
:插入、删除、查询都很快。

二叉树:每个节点最多有两个节点的树。
二叉树的基本操作
(1)插入节点:比根节点小的放左边,大的放右边
(2)查找节点
(3)删除节点
比较复杂:在删除前需要查找要删除的节点,找到后,这要删除的节点有三种情况要考虑。
1.该节点是叶子节点,没有子节点

2.该节点有一个子节点

3.该节点有两个子节点

(4)遍历(递归实现):
前序:访问根节点,前序遍历左子树,前序遍历右子树
中序:中序遍历左子树,访问根节点,中序遍历右子树
后序:后序遍历左子树,后序遍历右子树,访问根节点

package com.chb.chap10;

public class Node {
	//数据项
	public long data;
	//多个数据项
	public String sData;
	//左子节点
	public Node leftChild;
	//右子节点
	public Node rightChild;
	
	public Node(long data,String sData) {
		this.data=data;
		this.sData=sData;
	}
	
	
}

package com.chb.chap10;

public class Tree {
	public Node root;//根节点
	//插入节点
	public void insert(long value,String sData) {
		//封装节点
		Node newnode=new Node(value,sData);
		//引用当前节点
		Node current=root;
		//引用父节点
		Node parent;
		//如果root为null,也就是第一次插入的时候
		if(root==null) {
			root=newnode;
			return;
		}else {
			while(true) {
				//父节点指向当前节点
				parent=current;
				//如果当前节点的数据日插入的节点要大,则向左走
				if(current.data>value) {
					current=current.leftChild;
					if(current==null) {
						parent.leftChild=newnode;
						return;
					}
				}else {
					current=current.rightChild;
					if(current==null) {
						parent.rightChild=newnode;
						return;
					}
				}
			}
		}
	}
	//查找节点
	public Node find(long value) {
		//引用当前节点,从根节点开始
		Node current=root;
		//循环,只要找的节点不等于当前节点的数据项
		while(current.data!=value) {
			//进行比较,比较查找值与当前节点的大小
			if(current.data>value) {
				current=current.leftChild;
			}else {
				current=current.rightChild;
			}
			//若果查不到,返回null
			if(current==null) {
				return null;
			}
		}
		return current;
	}
	
	//前序遍历
	public void frontSearch(Node localNode) {
		if(localNode!=null) {
			//访问根节点
			System.out.println(localNode.data+" "+localNode.sData);
			//前序遍历左子树
			frontSearch(localNode.leftChild);
			//前序遍历右左子树
			frontSearch(localNode.rightChild);
		}
	}
	//中序遍历
	public void midSearch(Node localNode) {
		if(localNode!=null) {
			//中序前序遍历左子树
			midSearch(localNode.leftChild);
			//访问根节点
			System.out.println(localNode.data+" "+localNode.sData);
			//中序遍历右左子树
			midSearch(localNode.rightChild);
		}
	}
	//后序遍历
		public void endSearch(Node localNode) {
			if(localNode!=null) {
				//后序前序遍历左子树
				endSearch(localNode.leftChild);
				//后序遍历右左子树
				endSearch(localNode.rightChild);
				//访问根节点
				System.out.println(localNode.data+" "+localNode.sData);
			}
		}
	public static void main(String[] args) {
		Tree tree=new Tree();
		tree.insert(10,"A");
		tree.insert(20,"B");
		tree.insert(15,"C");
		tree.insert(3,"D");
		
		System.out.println(tree.root.data);
		System.out.println(tree.root.rightChild.data);
		System.out.println(tree.root.leftChild.data);
		
		Node node=tree.find(20);
		System.out.println(node.data+" "+node.sData);
		
		System.out.println("++++++++++++++++前序遍历+++++++++++++++");
		tree.frontSearch(tree.root);
		
		System.out.println("++++++++++++++++中前序遍历+++++++++++++++");
		tree.midSearch(tree.root);
		
		System.out.println("++++++++++++++++后序遍历+++++++++++++++");
		tree.endSearch(tree.root);
	}
}

运行结果:
在这里插入图片描述

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值