数据结构-树结构的实际应用

本文深入探讨了树这种数据结构在实际问题解决中的应用,包括在搜索算法、文件系统、数据库索引和图形表示等多个领域的关键作用。通过实例分析,揭示了树结构如何提高效率并简化复杂数据的管理。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

package com.chb.tree;

import java.util.Arrays;

public class HeapSort {
   
	public static void main(String[] args) {
   
		// 要求将数组进行升序排序
		int arr[] = {
    4, 6, 8, 5, 9 };
		System.out.println("排序前=" + Arrays.toString(arr));
		heapSort(arr);
		System.out.println("排序后=" + Arrays.toString(arr));
	}

	// 编写一个堆排序的方法
	public static void heapSort(int arr[]) {
   
		int temp = 0;
		System.out.println("堆排序!!");
		// 完成我们最终代码
		// 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
		for (int i = arr.length / 2 - 1; i >= 0; i--) {
   
			adjustHeap(arr, i, arr.length);
		}
		/*
		 * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
		 * 3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
		 */
		for (int j = arr.length - 1; j > 0; j--) {
   
			// 交换
			temp = arr[j];
			arr[j] = arr[0];
			arr[0] = temp;
			adjustHeap(arr, 0, j);
		}

		// System.out.println("数组=" + Arrays.toString(arr));
	}

	public static void adjustHeap(int arr[], int i, int lenght) {
   
		// 将一个数组(二叉树), 调整成一个大顶堆
		/**
		 * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆 举例 int arr[] = {4, 6, 8, 5, 9}; => i = 1 =>
		 * adjustHeap => 得到 {4, 9, 8, 5, 6} 如果我们再次调用 adjustHeap 传入的是 i = 0 => 得到 {4, 9,
		 * 8, 5, 6} => {9,6,8,5, 4}
		 * 
		 * @param arr    待调整的数组
		 * @param i      表示非叶子结点在数组中索引
		 * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
		 */
		int temp = arr[i];// 先取出当前元素的值,保存在临时变量
		// 开始调整
		// 说明
		// 1. k = i * 2 + 1 k 是 i结点的左子结点
		for (int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
   
			if (k + 1 < lenght && arr[k] < arr[k + 1]) {
    // 说明左子结点的值小于右子结点的值
				k++; // k 指向右子结点
			}
			if (arr[k] > temp) {
    // 如果子结点大于父结点
				arr[i] = arr[k]; // 把较大的值赋给当前结点
				i = k; // !!! i 指向 k,继续循环比较
			} else {
   
				break;// !
			}
		}
		// 当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
		arr[i] = temp;// 将temp值放到调整后的位置
	}
}

运行结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

package com.chb.Huffman;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {
   
	public static void main(String[] args) {
   
		int arr[] = {
    13, 7, 8, 3, 29, 6, 1 };
		Node root = createHuffmanTree(arr);
		
		//测试一把
		preOrder(root); 
	}

	// 编写一个前序遍历的方法
	public static void preOrder(Node root) {
   
		if (root != null) {
   
			root.preOrder();
		} else {
   
			System.out.println("是空树,不能遍历~~");
		}
	}

	// 创建赫夫曼树的方法
	public static Node createHuffmanTree(int[] arr) {
   
		// 第一步为了操作方便
		// 1. 遍历 arr 数组
		// 2. 将arr的每个元素构成成一个Node
		// 3. 将Node 放入到ArrayList中
		List<Node> nodes = new ArrayList<Node>();
		for (int value : arr) {
   
			nodes.add(new Node(value));
		}

		// 我们处理的过程是一个循环的过程
		while (nodes.size() > 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值