吴恩达机器学习总结:第十四 大型机器学习(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.大数据集的学习(1)长处及缺陷    a.获得高性能的最佳方法之一是采用低偏置算法并对大量数据进行训练    b.我们看到只要提供大量数据的算法,它们的表现都非常相似    c.但是,使用大型...

2018-04-11 10:14:28

阅读数 77

评论数 0

吴恩达机器学习总结:第十三 推荐系统(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.推荐系统-介绍(1)ML系统的重要应用    a.许多科技公司发现推荐系统很关键(亚马逊,Ebay)    b.推荐系统性能提高能带来更多收入(2)推荐系统不是一种技术,而是一种想法(3)例子...

2018-04-10 09:53:12

阅读数 325

评论数 0

吴恩达机器学习总结:第十二 异常检测(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.异常检测-问题动机(1)问题检测是什么    a.我们有一些包括正常值的数据    b.我们如何确保他们是正常的取决于我们    c.事实上,如果有一些实际上并不正常,那么也可以使用该数据集作...

2018-04-09 10:19:45

阅读数 132

评论数 0

吴恩达机器学习总结:第十一 降维(PCA)(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.动机I:数据压缩(1)压缩    a.加速算法    b.减小数据空间    c.2维降为1维例子    d.3维降为2维例子       e.在实际中,我们正常会将1000维将为100维2....

2018-04-08 15:02:21

阅读数 1890

评论数 0

吴恩达机器学习总结:第十课 聚类分析(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.无监督学习——介绍(1)聚类(从无标签数据中学习)(2)无监督学习(3)适用聚类的    a.市场划分    b.社交网络分析    c.计算机集群    d.天文数据分析2.K-均值算法(1...

2018-04-07 17:10:55

阅读数 112

评论数 0

吴恩达机器学习总结:第九课 支持向量机(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.支持向量机——优化对象(1)另一种替代的对于逻辑回归的视角    a.逻辑回归假设,和sigmoid函数图,以及代价函数            b.将(hθ(x))代入代价函数,得到另外一种形...

2018-04-06 16:09:57

阅读数 152

评论数 1

吴恩达机器学习总结:第八课 机器学习系统设计(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.机器学习系统设计    (1)接触如何组合一个系统    (2)这部分需要很少的数学方法,但是数学方法可以帮助你理解算法 2.优先处理需要处理的问题--垃圾邮件分类     (1)选择你自己的...

2018-04-05 18:50:46

阅读数 60

评论数 0

吴恩达机器学习总结:第七课 运用机器学习的建议(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.决定接下来该怎么尝试(1)调试学习算法(当实施正则化线性回归之后,预测中有比较大错误)    a.获得更多训练数据(前提是要保证更多的训练集有用)    b.使用更小的特征集(仔细选择小子集,...

2018-04-03 17:25:54

阅读数 69

评论数 0

吴恩达机器学习总结:第六课 神经网络-学习(大纲摘要及课后作业)

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后都会更博。英文非官方笔记总结1.神经网络代价函数2.后向算法(被用来最小化代价函数)    (1)误差        a. 第四层输出误差表示为δj4 = aj4 - yj   δ4 = a4 - y            ...

2018-04-02 09:31:45

阅读数 95

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭