问题及代码:
- *
- * Copyright (c)2016,烟台大学计算机与控制工程学院
- * All rights reserved.
- * 文件名称:ccc.cpp
- * 作 者:陈晓琳
- * 完成日期:2016年12月16日
- * 版 本 号:v1.0
- * 问题描述:
- 实现B-树的基本操作。基于序列{4, 9, 0, 1, 8, 6, 3, 5, 2, 7}完成测试。
- (1)创建对应的3阶B-树b,用括号法输出b树。
- (2)从b中分别删除关键字为8和1的节点,用括号法输出删除节点后的b树。
- * 输入描述:无
- * 程序输出:测试数据
- */
代码:
- #include <stdio.h>
- #include <malloc.h>
- #define MAXM 10 //定义B-树的最大的阶数
- typedef int KeyType; //KeyType为关键字类型
- typedef struct node //B-树结点类型定义
- {
- int keynum; //结点当前拥有的关键字的个数
- KeyType key[MAXM]; //key[1..keynum]存放关键字,key[0]不用
- struct node *parent; //双亲结点指针
- struct node *ptr[MAXM]; //孩子结点指针数组ptr[0..keynum]
- } BTNode;
- typedef struct //B-树的查找结果类型
- {
- BTNode *pt; //指向找到的结点
- int i; //1..m,在结点中的关键字序号
- int tag; //1:查找成功,O:查找失败
- } Result;
- int m; //m阶B-树,为全局变量
- int Max; //m阶B-树中每个结点的至多关键字个数,Max=m-1
- int Min; //m阶B-树中非叶子结点的至少关键字个数,Min=(m-1)/2
- int Search(BTNode *p,KeyType k)
- {
- //在p->key[1..keynum]中查找i,使得p->key[i]<=k<p->key[i+1]
- int i=0;
- for(i=0; i<p->keynum && p->key[i+1]<=k; i++);
- return i;
- }
- Result SearchBTree(BTNode *t,KeyType k)
- {
- /*在m阶t树t上查找关键字k,返回结果(pt,i,tag)。若查找成功,则特征值
- tag=1,指针pt所指结点中第i个关键字等于k;否则特征值tag=0,等于k的
- 关键字应插入在指针Pt所指结点中第i和第i+1个关键字之间*/
- BTNode *p=t,*q=NULL; //初始化,p指向待查结点,q指向p的双亲
- int found=0,i=0;
- Result r;
- while (p!=NULL && found==0)
- {
- i=Search(p,k); //在p->key[1..keynum]中查找i,使得p->key[i]<=k<p->key[i+1]
- if (i>0 && p->key[i]==k) //找到待查关键字
- found=1;
- else
- {
- q=p;
- p=p->ptr[i];
- }
- }
- r.i=i;
- if (found==1) //查找成功
- {
- r.pt=p;
- r.tag=1;
- }
- else //查找不成功,返回K的插入位置信息
- {
- r.pt=q;
- r.tag=0;
- }
- return r; //返回k的位置(或插入位置)
- }
- void Insert(BTNode *&q,int i,KeyType x,BTNode *ap)
- {
- //将x和ap分别插入到q->key[i+1]和q->ptr[i+1]中
- int j;
- for(j=q->keynum; j>i; j--) //空出一个位置
- {
- q->key[j+1]=q->key[j];
- q->ptr[j+1]=q->ptr[j];
- }
- q->key[i+1]=x;
- q->ptr[i+1]=ap;
- if (ap!=NULL) ap->parent=q;
- q->keynum++;
- }
- void Split(BTNode *&q,BTNode *&ap)
- {
- //将结点q分裂成两个结点,前一半保留,后一半移入新生结点ap
- int i,s=(m+1)/2;
- ap=(BTNode *)malloc(sizeof(BTNode)); //生成新结点*ap
- ap->ptr[0]=q->ptr[s]; //后一半移入ap
- for (i=s+1; i<=m; i++)
- {
- ap->key[i-s]=q->key[i];
- ap->ptr[i-s]=q->ptr[i];
- if (ap->ptr[i-s]!=NULL)
- ap->ptr[i-s]->parent=ap;
- }
- ap->keynum=q->keynum-s;
- ap->parent=q->parent;
- for (i=0; i<=q->keynum-s; i++) //修改指向双亲结点的指针
- if (ap->ptr[i]!=NULL) ap->ptr[i]->parent = ap;
- q->keynum=s-1; //q的前一半保留,修改keynum
- }
- void NewRoot(BTNode *&t,BTNode *p,KeyType x,BTNode *ap)
- {
- //生成含信息(T,x,ap)的新的根结点*t,原t和ap为子树指针
- t=(BTNode *)malloc(sizeof(BTNode));
- t->keynum=1;
- t->ptr[0]=p;
- t->ptr[1]=ap;
- t->key[1]=x;
- if (p!=NULL) p->parent=t;
- if (ap!=NULL) ap->parent=t;
- t->parent=NULL;
- }
- void InsertBTree(BTNode *&t, KeyType k, BTNode *q, int i)
- {
- /*在m阶t树t上结点*q的key[i]与key[i+1]之间插入关键字k。若引起
- 结点过大,则沿双亲链进行必要的结点分裂调整,使t仍是m阶t树。*/
- BTNode *ap;
- int finished,needNewRoot,s;
- KeyType x;
- if (q==NULL) //t是空树(参数q初值为NULL)
- NewRoot(t,NULL,k,NULL); //生成仅含关键字k的根结点*t
- else
- {
- x=k;
- ap=NULL;
- finished=needNewRoot=0;
- while (needNewRoot==0 && finished==0)
- {
- Insert(q,i,x,ap); //将x和ap分别插入到q->key[i+1]和q->ptr[i+1]
- if (q->keynum<=Max) finished=1; //插入完成
- else
- {
- //分裂结点*q,将q->key[s+1..m],q->ptr[s..m]和q->recptr[s+1..m]移入新结点*ap
- s=(m+1)/2;
- Split(q,ap);
- x=q->key[s];
- if (q->parent) //在双亲结点*q中查找x的插入位置
- {
- q=q->parent;
- i=Search(q, x);
- }
- else needNewRoot=1;
- }
- }
- if (needNewRoot==1) //根结点已分裂为结点*q和*ap
- NewRoot(t,q,x,ap); //生成新根结点*t,q和ap为子树指针
- }
- }
- void DispBTree(BTNode *t) //以括号表示法输出B-树
- {
- int i;
- if (t!=NULL)
- {
- printf("["); //输出当前结点关键字
- for (i=1; i<t->keynum; i++)
- printf("%d ",t->key[i]);
- printf("%d",t->key[i]);
- printf("]");
- if (t->keynum>0)
- {
- if (t->ptr[0]!=0) printf("("); //至少有一个子树时输出"("号
- for (i=0; i<t->keynum; i++) //对每个子树进行递归调用
- {
- DispBTree(t->ptr[i]);
- if (t->ptr[i+1]!=NULL) printf(",");
- }
- DispBTree(t->ptr[t->keynum]);
- if (t->ptr[0]!=0) printf(")"); //至少有一个子树时输出")"号
- }
- }
- }
- void Remove(BTNode *p,int i)
- //从*p结点删除key[i]和它的孩子指针ptr[i]
- {
- int j;
- for (j=i+1; j<=p->keynum; j++) //前移删除key[i]和ptr[i]
- {
- p->key[j-1]=p->key[j];
- p->ptr[j-1]=p->ptr[j];
- }
- p->keynum--;
- }
- void Successor(BTNode *p,int i)
- //查找被删关键字p->key[i](在非叶子结点中)的替代叶子结点
- {
- BTNode *q;
- for (q=p->ptr[i]; q->ptr[0]!=NULL; q=q->ptr[0]);
- p->key[i]=q->key[1]; //复制关键字值
- }
- void MoveRight(BTNode *p,int i)
- //把一个关键字移动到右兄弟中
- {
- int c;
- BTNode *t=p->ptr[i];
- for (c=t->keynum; c>0; c--) //将右兄弟中所有关键字移动一位
- {
- t->key[c+1]=t->key[c];
- t->ptr[c+1]=t->ptr[c];
- }
- t->ptr[1]=t->ptr[0]; //从双亲结点移动关键字到右兄弟中
- t->keynum++;
- t->key[1]=p->key[i];
- t=p->ptr[i-1]; //将左兄弟中最后一个关键字移动到双亲结点中
- p->key[i]=t->key[t->keynum];
- p->ptr[i]->ptr[0]=t->ptr[t->keynum];
- t->keynum--;
- }
- void MoveLeft(BTNode *p,int i)
- //把一个关键字移动到左兄弟中
- {
- int c;
- BTNode *t;
- t=p->ptr[i-1]; //把双亲结点中的关键字移动到左兄弟中
- t->keynum++;
- t->key[t->keynum]=p->key[i];
- t->ptr[t->keynum]=p->ptr[i]->ptr[0];
- t=p->ptr[i]; //把右兄弟中的关键字移动到双亲兄弟中
- p->key[i]=t->key[1];
- p->ptr[0]=t->ptr[1];
- t->keynum--;
- for (c=1; c<=t->keynum; c++) //将右兄弟中所有关键字移动一位
- {
- t->key[c]=t->key[c+1];
- t->ptr[c]=t->ptr[c+1];
- }
- }
- void Combine(BTNode *p,int i)
- //将三个结点合并到一个结点中
- {
- int c;
- BTNode *q=p->ptr[i]; //指向右结点,它将被置空和删除
- BTNode *l=p->ptr[i-1];
- l->keynum++; //l指向左结点
- l->key[l->keynum]=p->key[i];
- l->ptr[l->keynum]=q->ptr[0];
- for (c=1; c<=q->keynum; c++) //插入右结点中的所有关键字
- {
- l->keynum++;
- l->key[l->keynum]=q->key[c];
- l->ptr[l->keynum]=q->ptr[c];
- }
- for (c=i; c<p->keynum; c++) //删除父结点所有的关键字
- {
- p->key[c]=p->key[c+1];
- p->ptr[c]=p->ptr[c+1];
- }
- p->keynum--;
- free(q); //释放空右结点的空间
- }
- void Restore(BTNode *p,int i)
- //关键字删除后,调整B-树,找到一个关键字将其插入到p->ptr[i]中
- {
- if (i==0) //为最左边关键字的情况
- if (p->ptr[1]->keynum>Min)
- MoveLeft(p,1);
- else
- Combine(p,1);
- else if (i==p->keynum) //为最右边关键字的情况
- if (p->ptr[i-1]->keynum>Min)
- MoveRight(p,i);
- else
- Combine(p,i);
- else if (p->ptr[i-1]->keynum>Min) //为其他情况
- MoveRight(p,i);
- else if (p->ptr[i+1]->keynum>Min)
- MoveLeft(p,i+1);
- else
- Combine(p,i);
- }
- int SearchNode(KeyType k,BTNode *p,int &i)
- //在结点p中找关键字为k的位置i,成功时返回1,否则返回0
- {
- if (k<p->key[1]) //k小于*p结点的最小关键字时返回0
- {
- i=0;
- return 0;
- }
- else //在*p结点中查找
- {
- i=p->keynum;
- while (k<p->key[i] && i>1)
- i--;
- return(k==p->key[i]);
- }
- }
- int RecDelete(KeyType k,BTNode *p)
- //查找并删除关键字k
- {
- int i;
- int found;
- if (p==NULL)
- return 0;
- else
- {
- if ((found=SearchNode(k,p,i))==1) //查找关键字k
- {
- if (p->ptr[i-1]!=NULL) //若为非叶子结点
- {
- Successor(p,i); //由其后继代替它
- RecDelete(p->key[i],p->ptr[i]); //p->key[i]在叶子结点中
- }
- else
- Remove(p,i); //从*p结点中位置i处删除关键字
- }
- else
- found=RecDelete(k,p->ptr[i]); //沿孩子结点递归查找并删除关键字k
- if (p->ptr[i]!=NULL)
- if (p->ptr[i]->keynum<Min) //删除后关键字个数小于MIN
- Restore(p,i);
- return found;
- }
- }
- void DeleteBTree(KeyType k,BTNode *&root)
- //从B-树root中删除关键字k,若在一个结点中删除指定的关键字,不再有其他关键字,则删除该结点
- {
- BTNode *p; //用于释放一个空的root
- if (RecDelete(k,root)==0)
- printf(" 关键字%d不在B-树中\n",k);
- else if (root->keynum==0)
- {
- p=root;
- root=root->ptr[0];
- free(p);
- }
- }
- int main()
- {
- BTNode *t=NULL;
- Result s;
- int j,n=10;
- KeyType a[]= {4,9,0,1,8,6,3,5,2,7},k;
- m=3; //3阶B-树
- Max=m-1;
- Min=(m-1)/2;
- printf("创建一棵%d阶B-树:\n",m);
- for (j=0; j<n; j++) //创建一棵3阶B-树t
- {
- s=SearchBTree(t,a[j]);
- if (s.tag==0)
- InsertBTree(t,a[j],s.pt,s.i);
- printf(" 第%d步,插入%d: ",j+1,a[j]);
- DispBTree(t);
- printf("\n");
- }
- printf(" 结果B-树: ");
- DispBTree(t);
- printf("\n");
- printf("删除操作:\n");
- k=8;
- DeleteBTree(k,t);
- printf(" 删除%d: ",k);
- printf("B-树: ");
- DispBTree(t);
- printf("\n");
- k=1;
- DeleteBTree(k,t);
- printf(" 删除%d: ",k);
- printf("B-树: ");
- DispBTree(t);
- printf("\n");
- return 0;
- }
运行结果:
-
顶
- 0
-
踩
- 0