Python分割文件

面对一个20万行3万列的大型结构化数据文件,由于内存限制,使用pandas读取会报错。文章介绍了三种解决方案:1) 按列分割成29个小文件;2) 使用pandas的chunksize分块读取并写入;3) 利用Linux的xshell按行分割。其中按列分割的方法更利于后续特征筛选和计算。
摘要由CSDN通过智能技术生成

1. 背景介绍
有一个结构化数据,几十G(20w*3w),基于数据建模,但列数太多,需要先做特征筛选,再入模,但是数据太大,pandas读取会报Memory error,那么该怎么分割该数据,以求pandas可以读取呢?

2.1 方法1:按列分开
把文件按列分成29个小文件,再逐个读取文件操作

for i in range(29):
    locals()['fp'+str(i+1)] = open('./data1/'+'file'+str(i+1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值