自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 多模态大模型训练方法学习(笔记)

多模态大模型训练方法(学习)

2024-04-16 16:09:43 3103

原创 ACL2023: ConFEDE: Contrastive Feature Decomposition for Multimodal SentimentAnalysis

作者认为MSA(多模态情感分析)严重依赖于提取出的特征的质量,而特征又可以分为跨模态一致的不变特征(共有特征)和特定模态的特征(单模态的独有特征)。基于此作者提出了ConFEDE模型,该模型对比之前方法能够更好的提取共有特征和独有特征。训练方法和损失函数的创新。

2023-09-25 13:31:31 1914 1

原创 《Affective Region Recognition and FusionNetwork for Target-Level Multimodal SentimentClassificati》阅读

目标级/方面级的多模态情感分类任务已经获得更多的关注。现有的方法主要依赖于将整个图像和文本结合起来,忽略了图像中的隐藏情感区域的作用。基于这个问题作者提出了ARFN模型,该模型更关注视觉和文本在向量空间中的对齐。

2023-05-31 18:45:17 167 2

原创 《Modality-invariant temporal representation learning for multimodalsentiment classification》阅读笔记

作者认为现有的情感识别算法大多探索性能良好的多模态融合方法,但仍然有两个关键的挑战需要克服。首先,必须在融合前有效的提取模态间和模态内的特征,同时减少特征的模糊性。第二个挑战是如何捕获相似特征的不变表示(modality-invariant representations)。作者提出了一种新的模型来克服这些问题。

2023-05-30 17:20:26 989 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除